Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 30(2): 767-777, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31298696

RESUMO

It is well established that motor impairment often occurs alongside healthy aging, leading to problems with fine motor skills and coordination. Although previously thought to be caused by neuronal death accumulating across the lifespan, it is now believed that the source of this impairment instead stems from more subtle changes in neural connectivity. The dendritic spine is a prime target for exploration of this problem because it is the postsynaptic partner of most excitatory synapses received by the pyramidal neuron, a cortical cell that carries much of the information processing load in the cerebral cortex. We repeatedly imaged the same dendrites in young adult and aged mouse motor cortex over the course of 1 month to look for differences in the baseline state of the dendritic spine population. These experiments reveal increased dendritic spine density, without obvious changes in spine clustering, occurring at the aged dendrite. Additionally, aged dendrites exhibit elevated spine turnover and stabilization alongside decreased long-term spine survival. These results suggest that at baseline the aged motor cortex may exist in a perpetual state of relative instability and attempts at compensation. This phenotype of aging may provide clues for future targets of aging-related motor impairment remediation.


Assuntos
Envelhecimento/fisiologia , Espinhas Dendríticas/fisiologia , Córtex Motor/citologia , Córtex Motor/fisiologia , Células Piramidais/citologia , Células Piramidais/fisiologia , Animais , Feminino , Masculino , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...