Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Neurol ; 86(5): 780-792, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31433864

RESUMO

OBJECTIVE: Astrocytes have gained attention as important players in neurological disease. In line with their heterogeneous character, defects in specific astrocyte subtypes have been identified. Leukodystrophy vanishing white matter (VWM) shows selective vulnerability in white matter astrocytes, but the underlying mechanisms remain unclear. Induced pluripotent stem cell technology is being extensively explored in studies of pathophysiology and regenerative medicine. However, models for distinct astrocyte subtypes for VWM are lacking, thereby hampering identification of disease-specific pathways. METHODS: Here, we characterize human and mouse pluripotent stem cell-derived gray and white matter astrocyte subtypes to generate an in vitro VWM model. We examined morphology and functionality, and used coculture methods, high-content microscopy, and RNA sequencing to study VWM cultures. RESULTS: We found intrinsic vulnerability in specific astrocyte subpopulations in VWM. When comparing VWM and control cultures, white matter-like astrocytes inhibited oligodendrocyte maturation, and showed affected pathways in both human and mouse cultures, involving the immune system and extracellular matrix. Interestingly, human white matter-like astrocytes presented additional, human-specific disease mechanisms, such as neuronal and mitochondrial functioning. INTERPRETATION: Astrocyte subtype cultures revealed disease-specific pathways in VWM. Cross-validation of human- and mouse-derived protocols identified human-specific disease aspects. This study provides new insights into VWM disease mechanisms, which helps the development of in vivo regenerative applications, and we further present strategies to study astrocyte subtype vulnerability in neurological disease. ANN NEUROL 2019;86:780-792.


Assuntos
Astrócitos/patologia , Técnicas de Cultura , Células-Tronco Pluripotentes Induzidas , Leucoencefalopatias/patologia , Animais , Humanos , Camundongos
2.
Stem Cell Reports ; 12(3): 441-450, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30799272

RESUMO

Stem cell therapy has great prospects for brain white matter disorders, including the genetically determined disorders called leukodystrophies. We focus on the devastating leukodystrophy vanishing white matter (VWM). Patients with VWM show severe disability and early death, and treatment options are lacking. Previous studies showed successful cell replacement therapy in rodent models for myelin defects. However, proof-of-concept studies of allogeneic cell replacement in models representative of human leukodystrophies are lacking. We tested cell replacement in a mouse model representative of VWM. We transplanted different murine glial progenitor cell populations and showed improved pathological hallmarks and motor function. Improved mice showed a higher percentage of transplanted cells that differentiated into GFAP+ astrocytes, suggesting best therapeutic prospects for replacement of astroglial lineage cells. This is a proof-of-concept study for cell transplantation in VWM and suggests that glial cell replacement therapy is a promising therapeutic strategy for leukodystrophy patients.


Assuntos
Leucoencefalopatias/patologia , Substância Branca/patologia , Animais , Astrócitos/patologia , Diferenciação Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/patologia , Neuroglia/patologia , Transplante de Células-Tronco/métodos , Células-Tronco/patologia
3.
PLoS One ; 12(6): e0178533, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28586384

RESUMO

Generation of neuronal cultures from induced pluripotent stem cells (hiPSCs) serve the studies of human brain disorders. However we lack neuronal networks with balanced excitatory-inhibitory activities, which are suitable for single cell analysis. We generated low-density networks of hPSC-derived GABAergic and glutamatergic cortical neurons. We used two different co-culture models with astrocytes. We show that these cultures have balanced excitatory-inhibitory synaptic identities using confocal microscopy, electrophysiological recordings, calcium imaging and mRNA analysis. These simple and robust protocols offer the opportunity for single-cell to multi-level analysis of patient hiPSC-derived cortical excitatory-inhibitory networks; thereby creating advanced tools to study disease mechanisms underlying neurodevelopmental disorders.


Assuntos
Astrócitos/fisiologia , Técnicas de Cocultura , Neurônios GABAérgicos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Astrócitos/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Análise de Célula Única
4.
J Clin Invest ; 126(4): 1512-24, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26974157

RESUMO

Vanishing white matter (VWM) is a fatal leukodystrophy that is caused by mutations in genes encoding subunits of eukaryotic translation initiation factor 2B (eIF2B). Disease onset and severity are codetermined by genotype. White matter astrocytes and oligodendrocytes are almost exclusively affected; however, the mechanisms of VWM development remain unclear. Here, we used VWM mouse models, patients' tissue, and cell cultures to investigate whether astrocytes or oligodendrocytes are the primary affected cell type. We generated 2 mouse models with mutations (Eif2b5Arg191His/Arg191His and Eif2b4Arg484Trp/Arg484Trp) that cause severe VWM in humans and then crossed these strains to develop mice with various mutation combinations. Phenotypic severity was highly variable and dependent on genotype, reproducing the clinical spectrum of human VWM. In all mutant strains, impaired maturation of white matter astrocytes preceded onset and paralleled disease severity and progression. Bergmann glia and retinal Müller cells, nonforebrain astrocytes that have not been associated with VWM, were also affected, and involvement of these cells was confirmed in VWM patients. In coculture, VWM astrocytes secreted factors that inhibited oligodendrocyte maturation, whereas WT astrocytes allowed normal maturation of VWM oligodendrocytes. These studies demonstrate that astrocytes are central in VWM pathomechanisms and constitute potential therapeutic targets. Importantly, astrocytes should also be considered in the pathophysiology of other white matter disorders.


Assuntos
Astrócitos/metabolismo , Leucoencefalopatias/metabolismo , Substância Branca/metabolismo , Animais , Astrócitos/patologia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Leucoencefalopatias/fisiopatologia , Camundongos , Camundongos Mutantes , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Substância Branca/patologia , Substância Branca/fisiopatologia
5.
Oral Oncol ; 49(6): 560-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23578372

RESUMO

OBJECTIVES: Infection with the human papillomavirus (HPV) is an important risk factor for development of head and neck squamous cell carcinoma (HNSCC). Strikingly, HPV-positive HNSCCs have a more favorable prognosis than their HPV-negative counterparts. The current study was designed to explain this favorable prognosis of HPV-positive HNSCC. MATERIALS AND METHODS: This was performed by investigating the response of four HPV-positive and fourteen HPV-negative HNSCC cell lines to cisplatin, cetuximab and radiation. RESULTS: Analysis of the responses of this cell line panel indicated that HPV-positive cells are more resistant to cisplatin treatment than the HPV-negative HNSCCs, whereas the response to radiation and cetuximab did not differ. CONCLUSIONS: The current study suggests that the favorable prognosis for patients with HPV-positive HNSCC does not seem to be related to an intrinsic sensitivity of these tumor cells to chemotherapy or radiation in vitro.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Escamosas/terapia , Neoplasias de Cabeça e Pescoço/terapia , Papillomaviridae/isolamento & purificação , Radioterapia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , Terapia Combinada , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Tolerância a Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...