Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Alzheimers Res Ther ; 16(1): 148, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961512

RESUMO

BACKGROUND: Leveraging Alzheimer's disease (AD) imaging biomarkers and longitudinal cognitive data may allow us to establish evidence of cognitive resilience (CR) to AD pathology in-vivo. Here, we applied latent class mixture modeling, adjusting for sex, baseline age, and neuroimaging biomarkers of amyloid, tau and neurodegeneration, to a sample of cognitively unimpaired older adults to identify longitudinal trajectories of CR. METHODS: We identified 200 Harvard Aging Brain Study (HABS) participants (mean age = 71.89 years, SD = 9.41 years, 59% women) who were cognitively unimpaired at baseline with 2 or more timepoints of cognitive assessment following a single amyloid-PET, tau-PET and structural MRI. We examined latent class mixture models with longitudinal cognition as the dependent variable and time from baseline, baseline age, sex, neocortical Aß, entorhinal tau, and adjusted hippocampal volume as independent variables. We then examined group differences in CR-related factors across the identified subgroups from a favored model. Finally, we applied our favored model to a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 160, mean age = 73.9 years, SD = 7.6 years, 60% women). RESULTS: The favored model identified 3 latent subgroups, which we labelled as Normal (71% of HABS sample), Resilient (22.5%) and Declining (6.5%) subgroups. The Resilient subgroup exhibited higher baseline cognitive performance and a stable cognitive slope. They were differentiated from other groups by higher levels of verbal intelligence and past cognitive activity. In ADNI, this model identified a larger Normal subgroup (88.1%), a smaller Resilient subgroup (6.3%) and a Declining group (5.6%) with a lower cognitive baseline. CONCLUSION: These findings demonstrate the value of data-driven approaches to identify longitudinal CR groups in preclinical AD. With such an approach, we identified a CR subgroup who reflected expected characteristics based on previous literature, higher levels of verbal intelligence and past cognitive activity.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Feminino , Masculino , Idoso , Proteínas tau/metabolismo , Estudos Longitudinais , Estudos Transversais , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Doença de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Cognição/fisiologia , Pessoa de Meia-Idade , Reserva Cognitiva/fisiologia , Biomarcadores , Neuroimagem/métodos
2.
Alzheimers Dement ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988055

RESUMO

INTRODUCTION: Spatial extent-based measures of how far amyloid beta (Aß) has spread throughout the neocortex may be more sensitive than traditional Aß-positron emission tomography (PET) measures of Aß level for detecting early Aß deposits in preclinical Alzheimer's disease (AD) and improve understanding of Aß's association with tau proliferation and cognitive decline. METHODS: Pittsburgh Compound-B (PIB)-PET scans from 261 cognitively unimpaired older adults from the Harvard Aging Brain Study were used to measure Aß level (LVL; neocortical PIB DVR) and spatial extent (EXT), calculated as the proportion of the neocortex that is PIB+. RESULTS: EXT enabled earlier detection of Aß deposits longitudinally confirmed to reach a traditional LVL-based threshold for Aß+ within 5 years. EXT improved prediction of cognitive decline (Preclinical Alzheimer Cognitive Composite) and tau proliferation (flortaucipir-PET) over LVL. DISCUSSION: These findings indicate EXT may be more sensitive to Aß's role in preclinical AD than level and improve targeting of individuals for AD prevention trials. HIGHLIGHTS: Aß spatial extent (EXT) was measured as the percentage of the neocortex with elevated Pittsburgh Compound-B. Aß EXT improved detection of Aß below traditional PET thresholds. Early regional Aß deposits were spatially heterogeneous. Cognition and tau were more closely tied to Aß EXT than Aß level. Neocortical tau onset aligned with reaching widespread neocortical Aß.

3.
Ann Neurol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007398

RESUMO

OBJECTIVE: Elevated entorhinal cortex (EC) tau in low beta-amyloid individuals can predict accumulation of pathology and cognitive decline. We compared the accuracy of magnetic resonance imaging (MRI)-derived locus coeruleus integrity, neocortical beta-amyloid burden by positron emission tomography (PET), and hippocampal volume in identifying elevated entorhinal tau signal in asymptomatic individuals who are considered beta-amyloid PET-negative. METHODS: We included 188 asymptomatic individuals (70.78 ± 11.51 years, 58% female) who underwent 3T-MRI of the locus coeruleus, Pittsburgh compound-B (PiB), and Flortaucipir (FTP) PET. Associations between elevated EC tau and neocortical PiB, hippocampal volume, or locus coeruleus integrity were evaluated and compared using logistic regression and receiver operating characteristic analyses in the PiB- sample with a clinical dementia rating (CDR) of 0. Associations with clinical progression (CDR-sum-of-boxes) over a time span of 6 years were evaluated with Cox proportional hazard models. RESULTS: We identified 26 (21%) individuals with high EC FTP in the CDR = 0/PiB- sample. Locus coeruleus integrity was a significantly more sensitive and specific predictor of elevated EC FTP (area under the curve [AUC] = 85%) compared with PiB (AUC = 77%) or hippocampal volume (AUC = 76%). Based on the Youden-index, locus coeruleus integrity obtained a sensitivity of 77% and 85% specificity. Using the resulting locus coeruleus Youden cut-off, lower locus coeruleus integrity was associated with a two-fold increase in clinical progression, including mild cognitive impairment. INTERPRETATION: Locus coeruleus integrity has promise as a low-cost, non-invasive screening instrument to detect early cortical tau deposition and associated clinical progression in asymptomatic, low beta-amyloid individuals. ANN NEUROL 2024.

4.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38904081

RESUMO

The locus coeruleus-norepinephrine system plays a key role in supporting brain health along the lifespan, notably through its modulatory effects on neuroinflammation. Using ultra-high field diffusion magnetic resonance imaging, we examined whether microstructural properties (neurite density index and orientation dispersion index) in the locus coeruleus were related to those in cortical and subcortical regions, and whether this was modulated by plasma glial fibrillary acidic protein levels, as a proxy of astrocyte reactivity. In our cohort of 60 healthy individuals (30 to 85 yr, 50% female), higher glial fibrillary acidic protein correlated with lower neurite density index in frontal cortical regions, the hippocampus, and the amygdala. Furthermore, under higher levels of glial fibrillary acidic protein (above ~ 150 pg/mL for cortical and ~ 145 pg/mL for subcortical regions), lower locus coeruleus orientation dispersion index was associated with lower orientation dispersion index in frontotemporal cortical regions and in subcortical regions. Interestingly, individuals with higher locus coeruleus orientation dispersion index exhibited higher orientation dispersion index in these (sub)cortical regions, despite having higher glial fibrillary acidic protein levels. Together, these results suggest that the interaction between locus coeruleus-norepinephrine cells and astrocytes can signal a detrimental or neuroprotective pathway for brain integrity and support the importance of maintaining locus coeruleus neuronal health in aging and in the prevention of age-related neurodegenerative diseases.


Assuntos
Astrócitos , Proteína Glial Fibrilar Ácida , Locus Cerúleo , Humanos , Feminino , Masculino , Locus Cerúleo/diagnóstico por imagem , Astrócitos/fisiologia , Idoso , Pessoa de Meia-Idade , Adulto , Idoso de 80 Anos ou mais , Proteína Glial Fibrilar Ácida/metabolismo , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Neuritos/fisiologia
5.
Alzheimers Res Ther ; 16(1): 119, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822365

RESUMO

BACKGROUND: Autopsy work reported that neuronal density in the locus coeruleus (LC) provides neural reserve against cognitive decline in dementia. Recent neuroimaging and pharmacological studies reported that left frontoparietal network functional connectivity (LFPN-FC) confers resilience against beta-amyloid (Aß)-related cognitive decline in preclinical sporadic and autosomal dominant Alzheimer's disease (AD), as well as against LC-related cognitive changes. Given that the LFPN and the LC play important roles in attention, and attention deficits have been observed early in the disease process, we examined whether LFPN-FC and LC structural health attenuate attentional decline in the context of AD pathology. METHODS: 142 participants from the Harvard Aging Brain Study who underwent resting-state functional MRI, LC structural imaging, PiB(Aß)-PET, and up to 5 years of cognitive follow-ups were included (mean age = 74.5 ± 9.9 years, 89 women). Cross-sectional robust linear regression associated LC integrity (measured as the average of five continuous voxels with the highest intensities in the structural LC images) or LFPN-FC with Digit Symbol Substitution Test (DSST) performance at baseline. Longitudinal robust mixed effect analyses examined associations between DSST decline and (i) two-way interactions of baseline LC integrity (or LFPN-FC) and PiB or (ii) the three-way interaction of baseline LC integrity, LFPN-FC, and PiB. Baseline age, sex, and years of education were included as covariates. RESULTS: At baseline, lower LFPN-FC, but not LC integrity, was related to worse DSST performance. Longitudinally, lower baseline LC integrity was associated with a faster DSST decline, especially at PiB > 10.38 CL. Lower baseline LFPN-FC was associated with a steeper decline on the DSST but independent of PiB. At elevated PiB levels (> 46 CL), higher baseline LFPN-FC was associated with an attenuated decline on the DSST, despite the presence of lower LC integrity. CONCLUSIONS: Our findings demonstrate that the LC can provide resilience against Aß-related attention decline. However, when Aß accumulates and the LC's resources may be depleted, the functioning of cortical target regions of the LC, such as the LFPN-FC, can provide additional resilience to sustain attentional performance in preclinical AD. These results provide critical insights into the neural correlates contributing to individual variability at risk versus resilience against Aß-related cognitive decline.


Assuntos
Doença de Alzheimer , Locus Cerúleo , Imageamento por Ressonância Magnética , Lobo Parietal , Humanos , Feminino , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Doença de Alzheimer/fisiopatologia , Idoso , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Imageamento por Ressonância Magnética/métodos , Lobo Parietal/diagnóstico por imagem , Idoso de 80 Anos ou mais , Atenção/fisiologia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Tomografia por Emissão de Pósitrons , Estudos Transversais , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Testes Neuropsicológicos
6.
Alzheimers Res Ther ; 16(1): 129, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886798

RESUMO

BACKGROUND: Autopsy work indicates that the widely-projecting noradrenergic pontine locus coeruleus (LC) is among the earliest regions to accumulate hyperphosphorylated tau, a neuropathological Alzheimer's disease (AD) hallmark. This early tau deposition is accompanied by a reduced density of LC projections and a reduction of norepinephrine's neuroprotective effects, potentially compromising the neuronal integrity of LC's cortical targets. Previous studies suggest that lower magnetic resonance imaging (MRI)-derived LC integrity may signal cortical tissue degeneration in cognitively healthy, older individuals. However, whether these observations are driven by underlying AD pathology remains unknown. To that end, we examined potential effect modifications by cortical beta-amyloid and tau pathology on the association between in vivo LC integrity, as quantified by LC MRI signal intensity, and cortical neurodegeneration, as indexed by cortical thickness. METHODS: A total of 165 older individuals (74.24 ± 9.72 years, ~ 60% female, 10% cognitively impaired) underwent whole-brain and dedicated LC 3T-MRI, Pittsburgh Compound-B (PiB, beta-amyloid) and Flortaucipir (FTP, tau) positron emission tomography. Linear regression analyses with bootstrapped standard errors (n = 2000) assessed associations between bilateral cortical thickness and i) LC MRI signal intensity and, ii) LC MRI signal intensity interacted with cortical FTP or PiB (i.e., EC FTP, IT FTP, neocortical PiB) in the entire sample and a low beta-amyloid subsample. RESULTS: Across the entire sample, we found a direct effect, where lower LC MRI signal intensity was associated with lower mediolateral temporal cortical thickness. Evaluation of potential effect modifications by FTP or PiB revealed that lower LC MRI signal intensity was related to lower cortical thickness, particularly in individuals with elevated (EC, IT) FTP or (neocortical) PiB. The latter result was present starting from subthreshold PiB values. In low PiB individuals, lower LC MRI signal intensity was related to lower EC cortical thickness in the context of elevated EC FTP. CONCLUSIONS: Our findings suggest that LC-related cortical neurodegeneration patterns in older individuals correspond to regions representing early Braak stages and may reflect a combination of LC projection density loss and emergence of cortical AD pathology. This provides a novel understanding that LC-related cortical neurodegeneration may signal downstream consequences of AD-related pathology, rather than being exclusively a result of aging.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Locus Cerúleo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Feminino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Masculino , Idoso , Proteínas tau/metabolismo , Idoso de 80 Anos ou mais , Estudos de Coortes , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Carbolinas , Tiazóis , Compostos de Anilina , Espessura Cortical do Cérebro
7.
Nat Commun ; 15(1): 4809, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844444

RESUMO

The direct access of olfactory afferents to memory-related cortical systems has inspired theories about the role of the olfactory pathways in the development of cortical neurodegeneration in Alzheimer's disease (AD). In this study, we used baseline olfactory identification measures with longitudinal flortaucipir and PiB PET, diffusion MRI of 89 cognitively normal older adults (73.82 ± 8.44 years; 56% females), and a transcriptomic data atlas to investigate the spatiotemporal spreading and genetic vulnerabilities of AD-related pathology aggregates in the olfactory system. We find that odor identification deficits are predominantly associated with tau accumulation in key areas of the olfactory pathway, with a particularly strong predictive power for longitudinal tau progression. We observe that tau spreads from the medial temporal lobe structures toward the olfactory system, not the reverse. Moreover, we observed a genetic background of odor perception-related genes that might confer vulnerability to tau accumulation along the olfactory system.


Assuntos
Envelhecimento , Doença de Alzheimer , Percepção Olfatória , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Feminino , Proteínas tau/metabolismo , Proteínas tau/genética , Masculino , Idoso , Percepção Olfatória/fisiologia , Envelhecimento/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Idoso de 80 Anos ou mais , Condutos Olfatórios/metabolismo , Condutos Olfatórios/diagnóstico por imagem , Olfato/fisiologia , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Lobo Temporal/metabolismo , Lobo Temporal/diagnóstico por imagem , Pessoa de Meia-Idade
8.
Artigo em Inglês | MEDLINE | ID: mdl-38763835

RESUMO

OBJECTIVE: Anxiety disorders and subsyndromal anxiety symptoms are highly prevalent in late life. Recent studies support that anxiety may be a neuropsychiatric symptom during preclinical Alzheimer's disease (AD) and that higher anxiety is associated with more rapid cognitive decline and progression to cognitive impairment. However, the associations of specific anxiety symptoms with AD pathologies and with co-occurring subjective and objective cognitive changes have not yet been established. METHODS: Baseline data from the A4 and Longitudinal Evaluation of Amyloid Risk and Neurodegeneration studies were analyzed. Older adult participants (n = 4,486) underwent assessments of anxiety (State-Trait Anxiety Inventory-6 item version [STAI]), and cerebral amyloid-beta (Aß; 18F-florbetapir) PET and a subset underwent tau (18F-flortaucipir) PET. Linear regressions estimated associations of Aß in a cortical composite and tau in the amygdala, entorhinal, and inferior temporal regions with STAI-Total and individual STAI item scores. Models adjusted for age, sex, education, marital status, depression, Apolipoprotein ε4 genotype, and subjective and objective cognition (Cognitive Function Index-participant; Preclinical Alzheimer Cognitive Composite). RESULTS: Greater Aß deposition was significantly associated with higher STAI-Worry, adjusting for all covariates, but not with other STAI items or STAI-Total scores. In mediation analyses, the association of Aß with STAI-Worry was partially mediated by subjective cognition with a stronger direct effect. No associations were found for regional tau deposition with STAI-Total or STAI-Worry score. CONCLUSION: Greater worry was associated with Aß but not tau deposition, independent of subjective and objective cognition in cognitively unimpaired (CU) older adults. These findings implicate worry as an early, specific behavioral marker and a possible therapeutic target in preclinical AD.

9.
Nat Aging ; 4(5): 625-637, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664576

RESUMO

Autopsy studies indicated that the locus coeruleus (LC) accumulates hyperphosphorylated tau before allocortical regions in Alzheimer's disease. By combining in vivo longitudinal magnetic resonance imaging measures of LC integrity, tau positron emission tomography imaging and cognition with autopsy data and transcriptomic information, we examined whether LC changes precede allocortical tau deposition and whether specific genetic features underlie LC's selective vulnerability to tau. We found that LC integrity changes preceded medial temporal lobe tau accumulation, and together these processes were associated with lower cognitive performance. Common gene expression profiles between LC-medial temporal lobe-limbic regions map to biological functions in protein transport regulation. These findings advance our understanding of the spatiotemporal patterns of initial tau spreading from the LC and LC's selective vulnerability to Alzheimer's disease pathology. LC integrity measures can be a promising indicator for identifying the time window when individuals are at risk of disease progression and underscore the importance of interventions mitigating initial tau spread.


Assuntos
Doença de Alzheimer , Cognição , Locus Cerúleo , Tomografia por Emissão de Pósitrons , Proteínas tau , Locus Cerúleo/metabolismo , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Cognição/fisiologia , Masculino , Feminino , Idoso , Imageamento por Ressonância Magnética , Idoso de 80 Anos ou mais , Lobo Temporal/metabolismo , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia
10.
Alzheimers Dement ; 20(6): 3958-3971, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38676563

RESUMO

INTRODUCTION: Animal research has shown that tau pathology in the locus coeruleus (LC) is associated with reduced norepinephrine signaling, lower projection density to the medial temporal lobe (MTL), atrophy, and cognitive impairment. We investigated the contribution of LC-MTL functional connectivity (FCLC-MTL) on cortical atrophy across Braak stage regions and its impact on cognition. METHODS: We analyzed functional magnetic resonance imaging and amyloid beta (Aß) positron emission tomography data from 128 cognitively normal participants, associating novelty-related FCLC-MTL with longitudinal atrophy and cognition with and without Aß moderation. RESULTS: Cross-sectionally, lower FCLC-MTL was associated with atrophy in Braak stage II regions. Longitudinally, atrophy in Braak stage 2 to 4 regions related to lower baseline FCLC-MTL at elevated levels of Aß, but not to other regions. Atrophy in Braak stage 2 regions mediated the relation between FCLC-MTL and subsequent cognitive decline. DISCUSSION: FCLC-MTL is implicated in Aß-related cortical atrophy, suggesting that LC-MTL connectivity could confer neuroprotective effects in preclinical AD. HIGHLIGHTS: Novelty-related functional magnetic resonance imaging (fMRI) LC-medial temporal lobe (MTL) connectivity links to longitudinal Aß-dependent atrophy. This relationship extended to higher Braak stage regions with increasing Aß burden. Longitudinal MTL atrophy mediated the LC-MTL connectivity-cognition relationship. Our findings mirror the animal data on MTL atrophy following NE signal dysfunction.


Assuntos
Doença de Alzheimer , Atrofia , Disfunção Cognitiva , Locus Cerúleo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Humanos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Masculino , Feminino , Atrofia/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Estudos Transversais , Lobo Temporal/patologia , Lobo Temporal/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Estudos Longitudinais , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia
11.
J Alzheimers Dis ; 99(1): 105-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38607758

RESUMO

 Tau accumulation in and neurodegeneration of locus coeruleus (LC) neurons is observed in Alzheimer's disease (AD). We investigated whether tangle and neuronal density in the rostral and caudal LC is characterized by an asymmetric pattern in 77 autopsy cases of the Rush Memory and Aging Project. We found left-right equivalence for tangle density across individuals with and without AD pathology. However, neuronal density, particularly in the caudal-rostral axis of the LC, is asymmetric among individuals with AD pathology. Asymmetry in LC neuronal density may signal advanced disease progression and should be considered in AD neuroimaging studies of LC neurodegeneration.


Assuntos
Doença de Alzheimer , Locus Cerúleo , Humanos , Locus Cerúleo/patologia , Doença de Alzheimer/patologia , Feminino , Masculino , Idoso de 80 Anos ou mais , Idoso , Neurônios/patologia , Neurônios/metabolismo , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo , Contagem de Células
12.
Mol Psychiatry ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355788

RESUMO

The locus coeruleus-noradrenaline system regulates brain-wide neural activity involved in cognition and behavior. Integrity of this subcortical neuromodulatory system is proposed to be a substrate of cognitive reserve that may be strengthened by lifetime cognitive and social activity. Conversely, accumulation of tau tangles in the brainstem locus coeruleus nuclei is recently studied as a very early marker of Alzheimer's disease (AD) pathogenesis and cognitive vulnerability, even among older adults without cognitive impairment or significant cerebral AD pathologies. This clinical-pathologic study examined whether locus coeruleus tangle density was cross-sectionally associated with lower antemortem cognitive performance and social activity among 142 cognitively unimpaired and impaired older adults and whether social activity, a putative reserve factor, mediated the association of tangle density and cognition. We found that greater locus coeruleus tangle density was associated with lower social activity for the whole sample and in the cognitively unimpaired group alone and these associations were independent of age, sex, education, depressive symptoms, and burden of cerebral amyloid and tau. The association of locus coeruleus tangle density with lower cognitive performance was partially mediated by level of social activity. These findings implicate the locus coeruleus-noradrenaline system in late-life social function and support that locus coeruleus tangle pathology is associated with lower levels of social activity, independent of cerebral AD pathologies, and specifically among older adults who are cognitively unimpaired. Early brainstem pathology may impact social function, and level of social function, in turn, influences cognition, prior to canonical stages of AD.

13.
Ann Neurol ; 95(4): 653-664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407546

RESUMO

OBJECTIVE: While studies suggested that locus coeruleus (LC) neurodegeneration contributes to sleep-wake dysregulation in Alzheimer's disease (AD), the association between LC integrity and circadian rest-activity patterns remains unknown. Here, we investigated the relationships between 24-hour rest-activity rhythms, cognitive trajectories, and autopsy-derived LC integrity in older adults with and without cortical AD neuropathology. METHODS: This retrospective study leveraged multi-modal data from participants of the longitudinal clinical-pathological Rush Memory and Aging Project. Indices of 24-hour rest-activity rhythm fragmentation (intradaily variability) and stability (interdaily stability) were extracted from annual actigraphic recordings, and cognitive trajectories were computed from annual cognitive evaluations. At autopsy, LC neurodegeneration was determined by the presence of hypopigmentation, and cortical AD neuropathology was assessed. Contributions of comorbid pathologies (Lewy bodies, cerebrovascular pathology) were evaluated. RESULTS: Among the 388 cases included in the study sample (age at death = 92.1 ± 5.9 years; 273 women), 98 (25.3%) displayed LC hypopigmentation, and 251 (64.7%) exhibited cortical AD neuropathology. Logistic regression models showed that higher rest-activity rhythm fragmentation, measured up to ~7.1 years before death, was associated with increased risk to display LC neurodegeneration at autopsy (odds ratio [OR] = 1.46, 95% confidence interval [CI95%]: 1.16-1.84, pBONF = 0.004), particularly in individuals with cortical AD neuropathology (OR = 1.56, CI95%: 1.15-2.15, pBONF = 0.03) and independently of comorbid pathologies. In addition, longitudinal increases in rest-activity rhythm fragmentation partially mediated the association between LC neurodegeneration and cognitive decline (estimate = -0.011, CI95%: -0.023--0.002, pBONF = 0.03). INTERPRETATION: These findings highlight the LC as a neurobiological correlate of sleep-wake dysregulation in AD, and further underscore the clinical relevance of monitoring rest-activity patterns for improved detection of at-risk individuals. ANN NEUROL 2024;95:653-664.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Hipopigmentação , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Locus Cerúleo/patologia , Estudos Retrospectivos , Disfunção Cognitiva/patologia , Hipopigmentação/patologia , Autopsia , Ritmo Circadiano/fisiologia
14.
Cerebellum ; 23(2): 802-832, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37428408

RESUMO

Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.


Assuntos
Transtorno Depressivo Maior , Adulto , Humanos , Idoso , Estudos Transversais , Consenso , Qualidade de Vida , Cerebelo/patologia , Envelhecimento , Imageamento por Ressonância Magnética/métodos
15.
J Cereb Blood Flow Metab ; 44(1): 131-141, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728659

RESUMO

Clinically normal females exhibit higher 18F-flortaucipir (FTP)-PET signal than males across the cortex. However, these sex differences may be explained by neuroimaging idiosyncrasies such as off-target extracerebral tracer retention or partial volume effects (PVEs). 343 clinically normal participants (female = 58%; mean[SD]=73.8[8.5] years) and 55 patients with mild cognitive impairment (female = 38%; mean[SD] = 76.9[7.3] years) underwent cross-sectional FTP-PET. We parcellated extracerebral FreeSurfer areas based on proximity to cortical ROIs. Sex differences in cortical tau were then estimated after accounting for local extracerebral retention. We simulated PVE by convolving group-level standardized uptake value ratio means in each ROI with 6 mm Gaussian kernels and compared the sexes across ROIs post-smoothing. Widespread sex differences in extracerebral retention were observed. Although attenuating sex differences in cortical tau-PET signal, covarying for extracerebral retention did not impact the largest sex differences in tau-PET signal. Differences in PVE were observed in both female and male directions with no clear sex-specific bias. Our findings suggest that sex differences in FTP are not solely attributed to off-target extracerebral retention or PVE, consistent with the notion that sex differences in medial temporal and neocortical tau are biologically driven. Future work should investigate sex differences in regional cerebral blood flow kinetics and longitudinal tau-PET.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Feminino , Proteínas tau/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Caracteres Sexuais , Estudos Transversais , Tomografia por Emissão de Pósitrons/métodos , Carbolinas/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Doença de Alzheimer/metabolismo
16.
Neurology ; 101(24): e2533-e2544, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37968130

RESUMO

BACKGROUND AND OBJECTIVES: Hippocampal volume (HV) atrophy is a well-known biomarker of memory impairment. However, compared with ß-amyloid (Aß) and tau imaging, it is less specific for Alzheimer disease (AD) pathology. This lack of specificity could provide indirect information about potential copathologies that cannot be observed in vivo. In this prospective cohort study, we aimed to assess the associations among Aß, tau, HV, and cognition, measured over a 10-year follow-up period with a special focus on the contributions of HV atrophy to cognition after adjusting for Aß and tau. METHODS: We enrolled 283 older adults without dementia or overt cognitive impairment in the Harvard Aging Brain Study. In this report, we only analyzed data from individuals with available longitudinal imaging and cognition data. Serial MRI (follow-up duration 1.3-7.0 years), neocortical Aß imaging on Pittsburgh Compound B PET scans (1.9-8.5 years), entorhinal and inferior temporal tau on flortaucipir PET scans (0.8-6.0 years), and the Preclinical Alzheimer Cognitive Composite (3.0-9.8 years) were prospectively collected. We evaluated the longitudinal associations between Aß, tau, volume, and cognition data and investigated sequential models to test the contribution of each biomarker to cognitive decline. RESULTS: We analyzed data from 128 clinically normal older adults, including 72 (56%) women and 56 (44%) men; median age at inclusion was 73 years (range 63-87). Thirty-four participants (27%) exhibited an initial high-Aß burden on PET imaging. Faster HV atrophy was correlated with faster cognitive decline (R2 = 0.28, p < 0.0001). When comparing all biomarkers, HV slope was associated with cognitive decline independently of Aß and tau measures, uniquely accounting for 10% of the variance. Altogether, 45% of the variance in cognitive decline was explained by combining the change measures in the different imaging biomarkers. DISCUSSION: In older adults, longitudinal hippocampal atrophy is associated with cognitive decline, independently of Aß or tau, suggesting that non-AD pathologies (e.g., TDP-43, vascular) may contribute to hippocampal-mediated cognitive decline. Serial HV measures, in addition to AD-specific biomarkers, may help evaluate the contribution of non-AD pathologies that cannot be measured otherwise in vivo.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Masculino , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Proteínas tau , Estudos Prospectivos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores , Atrofia , Tomografia por Emissão de Pósitrons
17.
J Sleep Res ; : e14085, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904313

RESUMO

Light triggers numerous non-image-forming, or non-visual, biological effects. The brain correlates of these non-image-forming effects have been investigated, notably using magnetic resonance imaging and short light exposures varying in irradiance and spectral quality. However, it is not clear whether non-image-forming responses estimation may be biased by having light in sequential blocks, for example, through a potential carryover effect of one light onto the next. We reasoned that pupil light reflex was an easy readout of one of the non-image-forming effects of light that could be used to address this issue. We characterised the sustained pupil light reflex in 13-16 healthy young individuals under short light exposures during three distinct cognitive processes (executive, emotional and attentional). Light conditions pseudo-randomly alternated between monochromatic orange light (0.16 melanopic equivalent daylight illuminance lux) and polychromatic blue-enriched white light of three different levels (37, 92, 190 melanopic equivalent daylight illuminance lux). As expected, higher melanopic irradiance was associated with larger sustained pupil light reflex in each cognitive domain. This result was stable over the light sequence under higher melanopic irradiance levels compared with lower ones. Exploratory frequency-domain analyses further revealed that sustained pupil light reflex was more variable under lower melanopic irradiance levels. Importantly, sustained pupil light reflex varied across tasks independently of the light condition, pointing to a potential impact of light history and/or cognitive context on sustained pupil light reflex. Together, our results emphasise that the distinct contribution and adaptation of the different retinal photoreceptors influence the non-image-forming effects of light and therefore potentially their brain correlates.

18.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37698926

RESUMO

BACKGROUNDThe locus coeruleus (LC) is the primary source of norepinephrine in the brain and regulates arousal and sleep. Animal research shows that it plays important roles in the transition between sleep and wakefulness, and between slow wave sleep and rapid eye movement sleep (REMS). It is unclear, however, whether the activity of the LC predicts sleep variability in humans.METHODSWe used 7-Tesla functional MRI, sleep electroencephalography (EEG), and a sleep questionnaire to test whether the LC activity during wakefulness was associated with sleep quality in 33 healthy younger (~22 years old; 28 women, 5 men) and 19 older (~61 years old; 14 women, 5 men) individuals.RESULTSWe found that, in older but not in younger participants, higher LC activity, as probed during an auditory attentional task, was associated with worse subjective sleep quality and with lower power over the EEG theta band during REMS. The results remained robust even when accounting for the age-related changes in the integrity of the LC.CONCLUSIONThese findings suggest that LC activity correlates with the perception of the sleep quality and an essential oscillatory mode of REMS, and we found that the LC may be an important target in the treatment of sleep- and age-related diseases.FUNDINGThis work was supported by Fonds National de la Recherche Scientifique (FRS-FNRS, T.0242.19 & J. 0222.20), Action de Recherche Concertée - Fédération Wallonie-Bruxelles (ARC SLEEPDEM 17/27-09), Fondation Recherche Alzheimer (SAO-FRA 2019/0025), ULiège, and European Regional Development Fund (Radiomed & Biomed-Hub).


Assuntos
Locus Cerúleo , Sono REM , Masculino , Animais , Humanos , Feminino , Idoso , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/fisiologia , Vigília/fisiologia , Qualidade do Sono , Sono/fisiologia
19.
Nutrients ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686798

RESUMO

Aging is associated with a decline in muscle mass and function, leading to increased risk for mobility limitations and frailty. Dietary interventions incorporating specific nutrients, such as pea proteins or inulin, have shown promise in attenuating age-related muscle loss. This study aimed to investigate the effect of pea proteins given with inulin on skeletal muscle in old rats. Old male rats (20 months old) were randomly assigned to one of two diet groups for 16 weeks: a 'PEA' group receiving a pea-protein-based diet, or a 'PEA + INU' group receiving the same pea protein-based diet supplemented with inulin. Both groups showed significant postprandial stimulation of muscle p70 S6 kinase phosphorylation rate after consumption of pea proteins. However, the PEA + INU rats showed significant preservation of muscle mass with time together with decreased MuRF1 transcript levels. In addition, inulin specifically increased PGC1-α expression and key mitochondrial enzyme activities in the plantaris muscle of the old rats. These findings suggest that dietary supplementation with pea proteins in combination with inulin has the potential to attenuate age-related muscle loss. Further research is warranted to explore the underlying mechanisms and determine the optimal dosage and duration of intervention for potential translation to human studies.


Assuntos
Proteínas de Ervilha , Humanos , Masculino , Animais , Ratos , Lactente , Inulina/farmacologia , Músculo Esquelético , Suplementos Nutricionais , Envelhecimento
20.
Elife ; 122023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650882

RESUMO

The locus coeruleus (LC) is an important noradrenergic nucleus that has recently attracted a lot of attention because of its emerging role in cognitive and psychiatric disorders. Although previous histological studies have shown that the LC has heterogeneous connections and cellular features, no studies have yet assessed its functional topography in vivo, how this heterogeneity changes over aging, and whether it is associated with cognition and mood. Here, we employ a gradient-based approach to characterize the functional heterogeneity in the organization of the LC over aging using 3T resting-state fMRI in a population-based cohort aged from 18 to 88 years of age (Cambridge Centre for Ageing and Neuroscience cohort, n=618). We show that the LC exhibits a rostro-caudal functional gradient along its longitudinal axis, which was replicated in an independent dataset (Human Connectome Project [HCP] 7T dataset, n=184). Although the main rostro-caudal direction of this gradient was consistent across age groups, its spatial features varied with increasing age, emotional memory, and emotion regulation. More specifically, a loss of rostral-like connectivity, more clustered functional topography, and greater asymmetry between right and left LC gradients was associated with higher age and worse behavioral performance. Furthermore, participants with higher-than-normal Hospital Anxiety and Depression Scale (HADS) ratings exhibited alterations in the gradient as well, which manifested in greater asymmetry. These results provide an in vivo account of how the functional topography of the LC changes over aging, and imply that spatial features of this organization are relevant markers of LC-related behavioral measures and psychopathology.


Assuntos
Afeto , Locus Cerúleo , Humanos , Locus Cerúleo/diagnóstico por imagem , Envelhecimento , Núcleo Celular , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...