Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474395

RESUMO

Dystroglycan is a ubiquitously expressed heterodimeric cell-surface laminin receptor with roles in cell adhesion, signalling, and membrane stabilisation. More recently, the transmembrane ß-subunit of dystroglycan has been shown to localise to both the nuclear envelope and the nucleoplasm. This has led to the hypothesis that dystroglycan may have a structural role at the nuclear envelope analogous to its role at the plasma membrane. The biochemical fraction of myoblast cells clearly supports the presence of dystroglycan in the nucleus. Deletion of the dystroglycan protein by disruption of the DAG1 locus using CRISPR/Cas9 leads to changes in nuclear size but not overall morphology; moreover, the Young's modulus of dystroglycan-deleted nuclei, as determined by atomic force microscopy, is unaltered. Dystroglycan-disrupted myoblasts are also no more susceptible to nuclear stresses including chemical and mechanical, than normal myoblasts. Re-expression of dystroglycan in DAG1-disrupted myoblasts restores nuclear size without affecting other nuclear parameters.


Assuntos
Distroglicanas , Laminina , Distroglicanas/metabolismo , Laminina/metabolismo , Núcleo Celular/metabolismo , Membrana Celular/metabolismo , Membrana Nuclear/metabolismo
2.
Cell Death Dis ; 10(3): 196, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814495

RESUMO

ß-dystroglycan (ß-DG) is a key component of multiprotein complexes in the plasma membrane and nuclear envelope. In addition, ß-DG undergoes two successive proteolytic cleavages that result in the liberation of its intracellular domain (ICD) into the cytosol and nucleus. However, stimuli-inducing ICD cleavage and the physiological relevance of this proteolytic fragment are largely unknown. In this study we show for the first time that ß-DG ICD is targeted to the nucleolus where it interacts with the nuclear proteins B23 and UBF (central factor of Pol I-mediated rRNA gene transcription) and binds to rDNA promoter regions. Interestingly DG silencing results in reduced B23 and UBF levels and aberrant nucleolar morphology. Furthermore, ß-DG ICD cleavage is induced by different nucleolar stressors, including oxidative stress, acidosis, and UV irradiation, which implies its participation in the response to nucleolar stress. Consistent with this idea, overexpression of ß-DG elicited mislocalization and decreased levels of UBF and suppression of rRNA expression, which in turn provoked altered ribosome profiling and decreased cell growth. Collectively our data reveal that ß-DG ICD acts as negative regulator of rDNA transcription by impeding the transcriptional activity of UBF, as a part of the protective mechanism activated in response to nucleolar stress.


Assuntos
Nucléolo Celular/metabolismo , Distroglicanas/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Ribossômico/biossíntese , Animais , Proliferação de Células/genética , Citoplasma/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Distroglicanas/antagonistas & inibidores , Distroglicanas/genética , Camundongos , Mioblastos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Estresse Oxidativo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Domínios Proteicos/genética , RNA Ribossômico/genética , Ribossomos/metabolismo , Transcrição Gênica , Regulação para Cima/genética
3.
Sci Rep ; 8(1): 17785, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30531996

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

4.
Sci Rep ; 7(1): 9906, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852008

RESUMO

ß-Dystroglycan (ß-DG) is a transmembrane protein with critical roles in cell adhesion, cytoskeleton remodeling and nuclear architecture. This functional diversity is attributed to the ability of ß-DG to target to, and conform specific protein assemblies at the plasma membrane (PM) and nuclear envelope (NE). Although a classical NLS and importin α/ß mediated nuclear import pathway has already been described for ß-DG, the intracellular trafficking route by which ß-DG reaches the nucleus is unknown. In this study, we demonstrated that ß-DG undergoes retrograde intracellular trafficking from the PM to the nucleus via the endosome-ER network. Furthermore, we provided evidence indicating that the translocon complex Sec61 mediates the release of ß-DG from the ER membrane, making it accessible for importins and nuclear import. Finally, we show that phosphorylation of ß-DG at Tyr890 is a key stimulus for ß-DG nuclear translocation. Collectively our data describe the retrograde intracellular trafficking route that ß-DG follows from PM to the nucleus. This dual role for a cell adhesion receptor permits the cell to functionally connect the PM with the nucleus and represents to our knowledge the first example of a cell adhesion receptor exhibiting retrograde nuclear trafficking and having dual roles in PM and NE.

5.
LGBT Health ; 3(2): 176-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26885936
6.
LGBT Health ; 1(4): 277-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26789856

RESUMO

PURPOSE: Transgender and gender nonconforming people who fulfill diagnostic criteria for autism spectrum disorders (ASDs) often present to mental health providers with concerns that are distinct from those without ASDs. Gender Dysphoria (GD) and ASDs have been proposed to share etiologic mechanisms and there is evidence that ASDs may be more common in transgender and gender nonconforming people. We explore the impact of ASD characteristics on individual gender identity, expression, and the process of psychotherapy. METHOD: The authors present two case studies of high-functioning individuals with ASD and GD diagnoses. RESULTS: The limited ability to articulate an inner experience, deficits in Theory of Mind (ToM), along with the intolerance of ambiguity as a manifestation of the cognitive rigidity characteristic of ASDs, may present special difficulties to gender identity formation and consolidation and create challenges in psychotherapy. CONCLUSIONS: The authors suggest that ASDs do not preclude gender transition and that individuals with high-functioning ASDs are capable of making informed decisions regarding their medical care and life choices. The authors also consider possible challenges and suggest techniques for assisting such clients in exploring their gender identities.

7.
PLoS One ; 6(8): e24023, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21886846

RESUMO

Cancer is characterized by aberrant patterns of expression of multiple genes. These major shifts in gene expression are believed to be due to not only genetic but also epigenetic changes. The epigenetic changes are communicated through chemical modifications, including histone modifications. However, it is unclear whether the binding of histone-modifying proteins to genomic regions and the placing of histone modifications efficiently discriminates corresponding genes from the rest of the genes in the human genome. We performed gene expression analysis of histone demethylases (HDMs) and histone methyltransferases (HMTs), their target genes and genes with relevant histone modifications in normal and tumor tissues. Surprisingly, this analysis revealed the existence of correlations in the expression levels of different HDMs and HMTs. The observed HDM/HMT gene expression signature was specific to particular normal and cancer cell types and highly correlated with target gene expression and the expression of genes with histone modifications. Notably, we observed that trimethylation at lysine 4 and lysine 27 separated preferentially expressed and underexpressed genes, which was strikingly different in cancer cells compared to normal cells. We conclude that changes in coordinated regulation of enzymes executing histone modifications may underlie global epigenetic changes occurring in cancer.


Assuntos
Epigênese Genética , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Neoplasias/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona Metiltransferases , Humanos , Neoplasias/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...