Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hippocampus ; 33(8): 889-905, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36869437

RESUMO

The hippocampal formation and entorhinal cortex are crucially involved in learning and memory as well as in spatial navigation. The conservation of these structures across the entire mammalian lineage demonstrates their importance. Information on a diverse set of spatially tuned neurons has become available, but we only have a rudimentary understanding of how anatomical network structure affects functional tuning. Bats are the only order of mammals that have evolved true flight, and with this specialization comes the need to navigate and behave in a three dimensional (3D) environment. Spatial tuning of cells in the entorhinal-hippocampal network of bats has been studied for some time, but whether the reported tuning in 3D is associated with changes in the entorhinal-hippocampal network is not known. Here we investigated the entorhinal-hippocampal projections in the Egyptian fruit bat (Rousettus aegyptiacus), by injecting chemical anterograde tracers in the entorhinal cortex. Detailed analyses of the terminations of these projections in the hippocampus showed that both the medial and lateral entorhinal cortex sent projections to the molecular layer of all subfields of the hippocampal formation. Our analyses showed that the terminal distributions of entorhinal fibers in the hippocampal formation of Egyptian fruit bats-including the proximo-distal and longitudinal topography and the layer-specificity-are similar to what has been described in other mammalian species such as rodents and primates. The major difference in entorhinal-hippocampal projections that was described to date between rodents and primates is in the terminal distribution of the DG projection. We found that bats have entorhinal-DG projections that seem more like those in primates than in rodents. It is likely that the latter projection in bats is specialized to the behavioral needs of this species, including 3D flight and long-distance navigation.


Assuntos
Quirópteros , Córtex Entorrinal , Animais , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia
2.
J Neurosci ; 38(45): 9712-9727, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30249791

RESUMO

Fan cells in layer II of the lateral entorhinal cortex (LEC) form a main component of the projection to the dentate gyrus, CA3 and CA2 of the hippocampal formation. This projection has a counterpart originating from stellate cells in layer II of the medial entorhinal cortex (MEC). Available evidence suggests that the two pathways carry different information, exemplified by a difference in spatial tuning of cells in LEC and MEC. The grid cell, a prominent position-modulated cell type present in MEC, has been postulated to derive its characteristic hexagonal firing pattern from dominant disynaptic inhibitory connections between hippocampal-projecting stellate cells. Given that grid cells have not been described in LEC, we aim to describe the local synaptic connectivity of fan cells, to explore whether the network architecture is similar to that of the MEC stellate cell. Using a combination of in vitro multicell electrophysiological and optogenetic approaches in acute slices from rodents of either sex, we show that excitatory connectivity between fan cells is very sparse. Fan cells connect preferentially with two distinct types of inhibitory interneurons, suggesting disynaptic inhibitory coupling as the main form of communication among fan cells. These principles are similar to those reported for stellate cells in MEC, indicating an overall comparable local circuit architecture of the main hippocampal-projecting cell types in the lateral and medial entorhinal cortex.SIGNIFICANCE STATEMENT Our data provide the first description of the synaptic microcircuit of hippocampal-projecting layer II cells in the lateral entorhinal cortex. We show that these cells make infrequent monosynaptic connections with each other, and that they preferentially communicate through a disynaptic inhibitory network. This is similar to the microcircuit of hippocampal-projecting stellate cells in layer II of the medial entorhinal cortex, but dissimilar to the connectivity observed in layer 2 of neocortex. In medial entorhinal cortex, the observed network structure has been proposed to underlie the firing pattern of grid cells. This opens the possibility that layer II cells in lateral entorhinal cortex exhibit regular firing patterns in an unexplored domain.


Assuntos
Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Ratos , Ratos Long-Evans , Proteína Reelina
3.
Front Syst Neurosci ; 11: 46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28701931

RESUMO

The entorhinal cortex (EC) is the major input and output structure of the hippocampal formation, forming the nodal point in cortico-hippocampal circuits. Different division schemes including two or many more subdivisions have been proposed, but here we will argue that subdividing EC into two components, the lateral EC (LEC) and medial EC (MEC) might suffice to describe the functional architecture of EC. This subdivision then leads to an anatomical interpretation of the different phenotypes of LEC and MEC. First, we will briefly summarize the cytoarchitectonic differences and differences in hippocampal projection patterns on which the subdivision between LEC and MEC traditionally is based and provide a short comparative perspective. Second, we focus on main differences in cortical connectivity, leading to the conclusion that the apparent differences may well correlate with the functional differences. Cortical connectivity of MEC is features interactions with areas such as the presubiculum, parasubiculum, retrosplenial cortex (RSC) and postrhinal cortex, all areas that are considered to belong to the "spatial processing domain" of the cortex. In contrast, LEC is strongly connected with olfactory areas, insular, medial- and orbitofrontal areas and perirhinal cortex. These areas are likely more involved in processing of object information, attention and motivation. Third, we will compare the intrinsic networks involving principal- and inter-neurons in LEC and MEC. Together, these observations suggest that the different phenotypes of both EC subdivisions likely depend on the combination of intrinsic organization and specific sets of inputs. We further suggest a reappraisal of the notion of EC as a layered input-output structure for the hippocampal formation.

4.
Mol Biol Cell ; 21(12): 2066-77, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20410135

RESUMO

Mesenchymal stem cells (MSCs) isolated from various tissues share common phenotypic and functional properties. However, intrinsic molecular evidence supporting these observations has been lacking. Here, we unravel overlapping genome-wide promoter DNA methylation patterns between MSCs from adipose tissue, bone marrow, and skeletal muscle, whereas hematopoietic progenitors are more epigenetically distant from MSCs as a whole. Commonly hypermethylated genes are enriched in signaling, metabolic, and developmental functions, whereas genes hypermethylated only in MSCs are associated with early development functions. We find that most lineage-specification promoters are DNA hypomethylated and harbor a combination of trimethylated H3K4 and H3K27, whereas early developmental genes are DNA hypermethylated with or without H3K27 methylation. Promoter DNA methylation patterns of differentiated cells are largely established at the progenitor stage; yet, differentiation segregates a minor fraction of the commonly hypermethylated promoters, generating greater epigenetic divergence between differentiated cell types than between their undifferentiated counterparts. We also show an effect of promoter CpG content on methylation dynamics upon differentiation and distinct methylation profiles on transcriptionally active and inactive promoters. We infer that methylation state of lineage-specific promoters in MSCs is not a primary determinant of differentiation capacity. Our results support the view of a common origin of mesenchymal progenitors.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Metilação de DNA/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Regiões Promotoras Genéticas , Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Linhagem da Célula/genética , Cromatina/genética , Imunoprecipitação da Cromatina , Ilhas de CpG/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Humanos , Lisina/metabolismo , Músculos/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Transcrição Gênica
5.
Mol Biol Cell ; 21(11): 1872-84, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20375147

RESUMO

In contrast to canonical histones, histone variant H3.3 is incorporated into chromatin in a replication-independent manner. Posttranslational modifications of H3.3 have been identified; however, the epigenetic environment of incorporated H3.3 is unclear. We have investigated the genomic distribution of epitope-tagged H3.3 in relation to histone modifications, DNA methylation, and transcription in mesenchymal stem cells. Quantitative imaging at the nucleus level shows that H3.3, relative to replicative H3.2 or canonical H2B, is enriched in chromatin domains marked by histone modifications of active or potentially active genes. Chromatin immunoprecipitation of epitope-tagged H3.3 and array hybridization identified 1649 H3.3-enriched promoters, a fraction of which is coenriched in H3K4me3 alone or together with H3K27me3, whereas H3K9me3 is excluded, corroborating nucleus-level imaging data. H3.3-enriched promoters are predominantly CpG-rich and preferentially DNA methylated, relative to the proportion of methylated RefSeq promoters in the genome. Most but not all H3.3-enriched promoters are transcriptionally active, and coenrichment of H3.3 with repressive H3K27me3 correlates with an enhanced proportion of expressed genes carrying this mark. H3.3-target genes are enriched in mesodermal differentiation and signaling functions. Our data suggest that in mesenchymal stem cells, H3.3 targets lineage-priming genes with a potential for activation facilitated by H3K4me3 in facultative association with H3K27me3.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/química , DNA/metabolismo , Genoma , Histonas/química , DNA/genética , Metilação de DNA , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Análise em Microsséries , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...