Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 28: 234-240, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29422288

RESUMO

Roux-en-Y Gastric bypass surgery (RYGB) is emerging as a powerful tool for treatment of obesity and may also cause remission of type 2 diabetes. However, the molecular mechanism of RYGB leading to diabetes remission independent of weight loss remains elusive. In this study, we profiled plasma metabolites and proteins of 10 normal glucose-tolerant obese (NO) and 9 diabetic obese (DO) patients before and 1-week, 3-months, 1-year after RYGB. 146 proteins and 128 metabolites from both NO and DO groups at all four stages were selected for further analysis. By analyzing a set of bi-molecular associations among the corresponding network of the subjects with our newly developed computational method, we defined the represented physiological states (called the edge-states that reflect the interactions among the bio-molecules), and the related molecular networks of NO and DO patients, respectively. The principal component analyses (PCA) revealed that the edge states of the post-RYGB NO subjects were significantly different from those of the post-RYGB DO patients. Particularly, the time-dependent changes of the molecular hub-networks differed between DO and NO groups after RYGB. In conclusion, by developing molecular network-based systems signatures, we for the first time reveal that RYGB generates a unique path for diabetes remission independent of weight loss.


Assuntos
Diabetes Mellitus Tipo 2/cirurgia , Biologia de Sistemas , Proteínas Sanguíneas/metabolismo , Diabetes Mellitus Tipo 2/sangue , Derivação Gástrica , Redes Reguladoras de Genes , Humanos , Metaboloma , Obesidade/genética , Análise de Componente Principal , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...