Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Autism ; 11(1): 89, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203459

RESUMO

BACKGROUND: Deletion or mutations of SHANK3 lead to Phelan-McDermid syndrome and monogenic forms of autism spectrum disorder (ASD). SHANK3 encodes its eponymous scaffolding protein at excitatory glutamatergic synapses. Altered morphology of dendrites and spines in the hippocampus, cerebellum, and striatum have been associated with behavioral impairments in Shank3-deficient animal models. Given the attentional deficit in these animals, our study explored whether deficiency of Shank3 in a rat model alters neuron morphology and synaptic ultrastructure in the medial prefrontal cortex (mPFC). METHODS: We assessed dendrite and spine morphology and spine density in mPFC layer III neurons in Shank3-homozygous knockout (Shank3-KO), heterozygous (Shank3-Het), and wild-type (WT) rats. We used electron microscopy to determine the density of asymmetric synapses in mPFC layer III excitatory neurons in these rats. We measured postsynaptic density (PSD) length, PSD area, and head diameter (HD) of spines at these synapses. RESULTS: Basal dendritic morphology was similar among the three genotypes. Spine density and morphology were comparable, but more thin and mushroom spines had larger head volumes in Shank3-Het compared to WT and Shank3-KO. All three groups had comparable synapse density and PSD length. Spine HD of total and non-perforated synapses in Shank3-Het rats, but not Shank3-KO rats, was significantly larger than in WT rats. The total and non-perforated PSD area was significantly larger in Shank3-Het rats compared to Shank3-KO rats. These findings represent preliminary evidence for synaptic ultrastructural alterations in the mPFC of rats that lack one copy of Shank3 and mimic the heterozygous loss of SHANK3 in Phelan-McDermid syndrome. LIMITATIONS: The Shank3 deletion in the rat model we used does not affect all isoforms of the protein and would only model the effect of mutations resulting in loss of the N-terminus of the protein. Given the higher prevalence of ASD in males, the ultrastructural study focused only on synaptic structure in male Shank3-deficient rats. CONCLUSIONS: We observed increased HD and PSD area in Shank3-Het rats. These observations suggest the occurrence of altered synaptic ultrastructure in this animal model, further pointing to a key role of defective expression of the Shank3 protein in ASD and Phelan-McDermid syndrome.


Assuntos
Proteínas do Tecido Nervoso/deficiência , Córtex Pré-Frontal/patologia , Sinapses/ultraestrutura , Animais , Espinhas Dendríticas/ultraestrutura , Feminino , Heterozigoto , Masculino , Proteínas do Tecido Nervoso/metabolismo , Densidade Pós-Sináptica/metabolismo , Ratos
2.
J Neuropathol Exp Neurol ; 79(10): 1072-1083, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32954436

RESUMO

Von Economo neurons (VENs) and fork cells are principally located in the anterior cingulate cortex (ACC) and the frontoinsular cortex (FI). Both of these regions integrate inputs from the autonomic nervous system (ANS) and are involved in decision-making and perception of the emotional states of self and others. Familial dysautonomia (FD) is an orphan disorder characterized by autonomic dysfunction and behavioral abnormalities including repetitive behavior and emotional rigidity, which are also seen in autism spectrum disorder. To understand a possible link between the ANS and the cortical regions implicated in emotion regulation we studied VENs and fork cells in an autonomic disorder. We determined the densities of VENs, fork cells, and pyramidal neurons and the ratio of VENs and fork cells to pyramidal neurons in ACC and FI in 4 FD patient and 6 matched control brains using a stereologic approach. We identified alterations in densities of VENs and pyramidal neurons and their distributions in the ACC and FI in FD brains. These data suggest that alterations in migration and numbers of VENs may be involved in FD pathophysiology thereby supporting the notion of a functional link between VENs, the ANS and the peripheral nervous system in general.


Assuntos
Disautonomia Familiar/patologia , Neocórtex/patologia , Neurônios/patologia , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Acta Neuropathol ; 134(4): 537-566, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28584888

RESUMO

Autism spectrum disorder (ASD) has a major impact on the development and social integration of affected individuals and is the most heritable of psychiatric disorders. An increase in the incidence of ASD cases has prompted a surge in research efforts on the underlying neuropathologic processes. We present an overview of current findings in neuropathology studies of ASD using two investigational approaches, postmortem human brains and ASD animal models, and discuss the overlap, limitations, and significance of each. Postmortem examination of ASD brains has revealed global changes including disorganized gray and white matter, increased number of neurons, decreased volume of neuronal soma, and increased neuropil, the last reflecting changes in densities of dendritic spines, cerebral vasculature and glia. Both cortical and non-cortical areas show region-specific abnormalities in neuronal morphology and cytoarchitectural organization, with consistent findings reported from the prefrontal cortex, fusiform gyrus, frontoinsular cortex, cingulate cortex, hippocampus, amygdala, cerebellum and brainstem. The paucity of postmortem human studies linking neuropathology to the underlying etiology has been partly addressed using animal models to explore the impact of genetic and non-genetic factors clinically relevant for the ASD phenotype. Genetically modified models include those based on well-studied monogenic ASD genes (NLGN3, NLGN4, NRXN1, CNTNAP2, SHANK3, MECP2, FMR1, TSC1/2), emerging risk genes (CHD8, SCN2A, SYNGAP1, ARID1B, GRIN2B, DSCAM, TBR1), and copy number variants (15q11-q13 deletion, 15q13.3 microdeletion, 15q11-13 duplication, 16p11.2 deletion and duplication, 22q11.2 deletion). Models of idiopathic ASD include inbred rodent strains that mimic ASD behaviors as well as models developed by environmental interventions such as prenatal exposure to sodium valproate, maternal autoantibodies, and maternal immune activation. In addition to replicating some of the neuropathologic features seen in postmortem studies, a common finding in several animal models of ASD is altered density of dendritic spines, with the direction of the change depending on the specific genetic modification, age and brain region. Overall, postmortem neuropathologic studies with larger sample sizes representative of the various ASD risk genes and diverse clinical phenotypes are warranted to clarify putative etiopathogenic pathways further and to promote the emergence of clinically relevant diagnostic and therapeutic tools. In addition, as genetic alterations may render certain individuals more vulnerable to developing the pathological changes at the synapse underlying the behavioral manifestations of ASD, neuropathologic investigation using genetically modified animal models will help to improve our understanding of the disease mechanisms and enhance the development of targeted treatments.


Assuntos
Transtorno do Espectro Autista/patologia , Encéfalo/patologia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Neurônios/metabolismo , Neurônios/patologia
4.
Acta Neuropathol ; 124(1): 67-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22467063

RESUMO

Autism is a neurodevelopmental disorder characterized by deficits in social interaction and social communication, as well as by the presence of repetitive and stereotyped behaviors and interests. Brodmann areas 44 and 45 in the inferior frontal cortex, which are involved in language processing, imitation function, and sociality processing networks, have been implicated in this complex disorder. Using a stereologic approach, this study aims to explore the presence of neuropathological differences in areas 44 and 45 in patients with autism compared to age- and hemisphere-matched controls. Based on previous evidence in the fusiform gyrus, we expected to find a decrease in the number and size of pyramidal neurons as well as an increase in volume of layers III, V, and VI in patients with autism. We observed significantly smaller pyramidal neurons in patients with autism compared to controls, although there was no difference in pyramidal neuron numbers or layer volumes. The reduced pyramidal neuron size suggests that a certain degree of dysfunction of areas 44 and 45 plays a role in the pathology of autism. Our results also support previous studies that have shown specific cellular neuropathology in autism with regionally specific reduction in neuron size, and provide further evidence for the possible involvement of the mirror neuron system, as well as impairment of neuronal networks relevant to communication and social behaviors, in this disorder.


Assuntos
Transtorno Autístico/patologia , Transtorno Autístico/fisiopatologia , Tamanho Celular , Lobo Frontal/patologia , Células Piramidais/patologia , Adulto , Idoso , Contagem de Células/métodos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas Estereotáxicas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...