Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; : e2350954, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837415

RESUMO

Hexokinases (HKs) control the first step of glucose catabolism. A switch of expression from liver HK (glucokinase, GCK) to the tumor isoenzyme HK2 is observed in hepatocellular carcinoma progression. Our prior work revealed that HK isoenzyme switch in hepatocytes not only regulates hepatic metabolic functions but also modulates innate immunity and sensitivity to Natural Killer (NK) cell cytotoxicity. This study investigates the impact of HK2 expression and its mitochondrial binding on the resistance of human liver cancer cells to NK-cell-induced cytolysis. We have shown that HK2 expression induces resistance to NK cell cytotoxicity in a process requiring mitochondrial binding of HK2. Neither HK2 nor GCK expression affects target cells' ability to activate NK cells. In contrast, mitochondrial binding of HK2 reduces effector caspase 3/7 activity both at baseline and upon NK-cell activation. Furthermore, HK2 tethering to mitochondria enhances their resistance to cytochrome c release triggered by tBID. These findings indicate that HK2 mitochondrial binding in liver cancer cells is an intrinsic resistance factor to cytolysis and an escape mechanism from immune surveillance.

2.
Antiviral Res ; 228: 105939, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909960

RESUMO

Viruses have developed sophisticated strategies to control metabolic activity of infected cells in order to supply replication machinery with energy and metabolites. Dengue virus (DENV), a mosquito-borne flavivirus responsible for dengue fever, is no exception. Previous reports have documented DENV interactions with metabolic pathways and shown in particular that glycolysis is increased in DENV-infected cells. However, underlying molecular mechanisms are still poorly characterized and dependence of DENV on this pathway has not been investigated in details yet. Here, we identified an interaction between the non-structural protein 3 (NS3) of DENV and glucokinase regulator protein (GCKR), a host protein that inhibits the liver-specific hexokinase GCK. NS3 expression was found to increase glucose consumption and lactate secretion in hepatic cell line expressing GCK. Interestingly, we observed that GCKR interaction with GCK decreases DENV replication, indicating the dependence of DENV to GCK activity and supporting the role of NS3 as an inhibitor of GCKR function. Accordingly, in the same cells, DENV replication both induces and depends on glycolysis. By targeting NAD(H) biosynthesis with the antimetabolite 6-Amino-Nicotinamide (6-AN), we decreased cellular glycolytic activity and inhibited DENV replication in hepatic cells. Infection of primary organotypic liver cultures (OLiC) from hamsters was also inhibited by 6-AN. Altogether, our results show that DENV has evolved strategies to control glycolysis in the liver, which could account for hepatic dysfunctions associated to infection. Besides, our findings suggest that lowering intracellular availability of NAD(H) could be a valuable therapeutic strategy to control glycolysis and inhibit DENV replication in the liver.


Assuntos
Vírus da Dengue , Dengue , Glucoquinase , Glicólise , NAD , Proteínas não Estruturais Virais , Replicação Viral , Glicólise/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Glucoquinase/metabolismo , Glucoquinase/antagonistas & inibidores , Humanos , Replicação Viral/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Animais , Dengue/tratamento farmacológico , Dengue/virologia , Dengue/metabolismo , NAD/metabolismo , NAD/biossíntese , Linhagem Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Glucose/metabolismo , Fígado/virologia , Fígado/metabolismo , Antivirais/farmacologia , Proteases Virais , Serina Endopeptidases , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
3.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055105

RESUMO

Hepatitis C virus (HCV) relies on cellular lipid metabolism for its replication, and actively modulates lipogenesis and lipid trafficking in infected hepatocytes. This translates into an intracellular accumulation of triglycerides leading to liver steatosis, cirrhosis and hepatocellular carcinoma, which are hallmarks of HCV pathogenesis. While the interaction of HCV with hepatocyte metabolic pathways is patent, how viral proteins are able to redirect central carbon metabolism towards lipogenesis is unclear. Here, we report that the HCV protein NS5A activates the glucokinase (GCK) isoenzyme of hexokinases through its D2 domain (NS5A-D2). GCK is the first rate-limiting enzyme of glycolysis in normal hepatocytes whose expression is replaced by the hexokinase 2 (HK2) isoenzyme in hepatocellular carcinoma cell lines. We took advantage of a unique cellular model specifically engineered to re-express GCK instead of HK2 in the Huh7 cell line to evaluate the consequences of NS5A-D2 expression on central carbon and lipid metabolism. NS5A-D2 increased glucose consumption but decreased glycogen storage. This was accompanied by an altered mitochondrial respiration, an accumulation of intracellular triglycerides and an increased production of very-low density lipoproteins. Altogether, our results show that NS5A-D2 can reprogram central carbon metabolism towards a more energetic and glycolytic phenotype compatible with HCV needs for replication.


Assuntos
Glucoquinase/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glicogênio/metabolismo , Glicólise , Interações Hospedeiro-Patógeno , Humanos , Metabolismo dos Lipídeos , Lipogênese , Mitocôndrias/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química
4.
Viruses ; 13(9)2021 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-34578395

RESUMO

Our therapeutic arsenal against viruses is very limited and the current pandemic of SARS-CoV-2 highlights the critical need for effective antivirals against emerging coronaviruses. Cellular assays allowing a precise quantification of viral replication in high-throughput experimental settings are essential to the screening of chemical libraries and the selection of best antiviral chemical structures. To develop a reporting system for SARS-CoV-2 infection, we generated cell lines expressing a firefly luciferase maintained in an inactive form by a consensus cleavage site for the viral protease 3CLPro of coronaviruses, so that the luminescent biosensor is turned on upon 3CLPro expression or SARS-CoV-2 infection. This cellular assay was used to screen a metabolism-oriented library of 492 compounds to identify metabolic vulnerabilities of coronaviruses for developing innovative therapeutic strategies. In agreement with recent reports, inhibitors of pyrimidine biosynthesis were found to prevent SARS-CoV-2 replication. Among the top hits, we also identified the NADPH oxidase (NOX) inhibitor Setanaxib. The anti-SARS-CoV-2 activity of Setanaxib was further confirmed using ACE2-expressing human pulmonary cells Beas2B as well as human primary nasal epithelial cells. Altogether, these results validate our cell-based functional assay and the interest of screening libraries of different origins to identify inhibitors of SARS-CoV-2 for drug repurposing or development.


Assuntos
Antivirais/isolamento & purificação , Técnicas Biossensoriais/métodos , Proteases 3C de Coronavírus/metabolismo , SARS-CoV-2/fisiologia , Replicação Viral , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , Células HEK293 , Humanos , Luciferases de Vaga-Lume/metabolismo , Mucosa Nasal/virologia , Pirazolonas/farmacologia , Piridonas/farmacologia , SARS-CoV-2/metabolismo , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
5.
Commun Biol ; 4(1): 217, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594203

RESUMO

During the cancerous transformation of normal hepatocytes into hepatocellular carcinoma (HCC), the enzyme catalyzing the first rate-limiting step of glycolysis, namely the glucokinase (GCK), is replaced by the higher affinity isoenzyme, hexokinase 2 (HK2). Here, we show that in HCC tumors the highest expression level of HK2 is inversely correlated to GCK expression, and is associated to poor prognosis for patient survival. To further explore functional consequences of the GCK-to-HK2 isoenzyme switch occurring during carcinogenesis, HK2 was knocked-out in the HCC cell line Huh7 and replaced by GCK, to generate the Huh7-GCK+/HK2- cell line. HK2 knockdown and GCK expression rewired central carbon metabolism, stimulated mitochondrial respiration and restored essential metabolic functions of normal hepatocytes such as lipogenesis, VLDL secretion, glycogen storage. It also reactivated innate immune responses and sensitivity to natural killer cells, showing that consequences of the HK switch extend beyond metabolic reprogramming.


Assuntos
Metabolismo Energético , Glucoquinase/metabolismo , Hexoquinase/metabolismo , Imunidade Inata , Lipogênese , Neoplasias Hepáticas/enzimologia , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glucoquinase/genética , Hexoquinase/genética , Humanos , Isoenzimas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Transdução de Sinais
6.
J Transl Med ; 18(1): 319, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811513

RESUMO

In less than 20 years, three deadly coronaviruses, SARS-CoV, MERS-CoV and SARS-CoV-2, have emerged in human population causing hundreds to hundreds of thousands of deaths. Other coronaviruses are causing epizootic representing a significant threat for both domestic and wild animals. Members of this viral family have the longest genome of all RNA viruses, and express up to 29 proteins establishing complex interactions with the host proteome. Deciphering these interactions is essential to identify cellular pathways hijacked by these viruses to replicate and escape innate immunity. Virus-host interactions also provide key information to select targets for antiviral drug development. Here, we have manually curated the literature to assemble a unique dataset of 1311 coronavirus-host protein-protein interactions. Functional enrichment and network-based analyses showed coronavirus connections to RNA processing and translation, DNA damage and pathogen sensing, interferon production, and metabolic pathways. In particular, this global analysis pinpointed overlooked interactions with translation modulators (GIGYF2-EIF4E2), components of the nuclear pore, proteins involved in mitochondria homeostasis (PHB, PHB2, STOML2), and methylation pathways (MAT2A/B). Finally, interactome data provided a rational for the antiviral activity of some drugs inhibiting coronaviruses replication. Altogether, this work describing the current landscape of coronavirus-host interactions provides valuable hints for understanding the pathophysiology of coronavirus infections and developing effective antiviral therapies.


Assuntos
Infecções por Coronavirus/metabolismo , Coronavirus/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Mapas de Interação de Proteínas , Proteínas Virais/metabolismo , Animais , Betacoronavirus/fisiologia , COVID-19 , Coronavirus/química , Infecções por Coronavirus/virologia , Bases de Dados de Proteínas , Humanos , Proteínas Mitocondriais/metabolismo , Pandemias , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Proibitinas , SARS-CoV-2 , Fatores de Transcrição/metabolismo , Replicação Viral/genética
7.
Biomol NMR Assign ; 14(1): 131-140, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32030621

RESUMO

Many cellular functions rely on stable protein-only or protein-RNA complexes. Deciphering their assembly mechanism is a key question in cell biology. We here focus on box C/D small nucleolar ribonucleoproteins involved in ribosome biogenesis. The mature particles contain four core proteins and a guide RNA. Despite their relatively simple composition, these particles don't self-assemble in eukaryote and the production of a native and functional particle requires a large number of transient other proteins, called assembly factors. We present here 13C and 15N solid-state NMR assignment of yeast 126-residue core protein Snu13 in the context of its 50 kDa pre-complex with assembly factors Rsa1p:Hit1p. In this sample, only one third of the protein is labelled, leading to a low sensitivity. We could nevertheless obtain assignment data for 91% of the residues. Secondary structure derived from our assignments shows that Snu13p overall structure is maintained in the context of the complex. Chemical shift perturbations are analysed to evaluate Snu13p conformational changes and interaction interface upon binding to its partner proteins. While indirect perturbations are observed in the hydrophobic core, we find other good candidate residues belonging to the interaction interface. We describe the role of some Snu13p N-terminal and C-terminal residues, not identified in previous structural studies. These preliminary results will serve as a basis for future interaction studies, especially by adding RNA, to decipher box C/D snoRNP particles assembly pathway.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Ribonucleoproteínas Nucleolares Pequenas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Peso Molecular , Estrutura Secundária de Proteína
8.
J Mol Biol ; 427(17): 2816-39, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26210662

RESUMO

In eukaryotes, nucleotide post-transcriptional modifications in RNAs play an essential role in cell proliferation by contributing to pre-ribosomal RNA processing, ribosome assembly and activity. Box C/D small nucleolar ribonucleoparticles catalyze site-specific 2'-O-methylation of riboses, one of the most prevalent RNA modifications. They contain one guide RNA and four core proteins and their in vivo assembly requires numerous factors including (HUMAN/Yeast) BCD1/Bcd1p, NUFIP1/Rsa1p, ZNHIT3/Hit1p, the R2TP complex composed of protein PIH1D1/Pih1p and RPAP3/Tah1p that bridges the R2TP complex to the HSP90/Hsp82 chaperone and two AAA+ ATPases. We show that Tah1p can stabilize Pih1p in the absence of Hsp82 activity during the stationary phase of growth and consequently that the Tah1p:Pih1p interaction is sufficient for Pih1p stability. This prompted us to establish the solution structure of the Tah1p:Pih1p complex by NMR. The C-terminal tail S93-S111 of Tah1p snakes along Pih1p264-344 folded in a CS domain to form two intermolecular ß-sheets and one covering loop. However, a thorough inspection of the NMR and crystal structures revealed structural differences that may be of functional importance. In addition, our NMR and isothermal titration calorimetry data revealed the formation of direct contacts between Pih1p257-344 and the Hsp82MC domain in the presence of Tah1p. By co-expression in Escherichia coli, we demonstrate that Pih1p has two other direct partners, the Rsa1p assembly factor and the Nop58p core protein, and in vivo and in vitro experiments mapped the required binding domains. Our data suggest that these two interactions are mutually exclusive. The implication of this finding for box C/D small nucleolar ribonucleoparticle assembly is discussed.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Proteínas de Choque Térmico HSP90/genética , Interações Hidrofóbicas e Hidrofílicas , Metilação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Dobramento de Proteína , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , RNA Ribossômico/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
9.
Biomol NMR Assign ; 9(1): 99-102, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24668569

RESUMO

We report the nearly complete (1)H, (15)N and (13)C resonance assignments of the two tetratricopeptide-repeat domains of the human RPAP3 protein, a co-chaperone of the heat-shock protein family.


Assuntos
Proteínas de Transporte/química , Ressonância Magnética Nuclear Biomolecular , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína
10.
Biomol NMR Assign ; 9(1): 71-3, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24493341

RESUMO

We report the nearly complete (1)H, (15)N and (13)C resonance assignment of the complex formed by the C-terminal domains of Pih1 and Tah1 from S. cerevisiae and evidence the folding ability of Tah1 under complex formation.


Assuntos
Chaperonas Moleculares/química , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae
11.
Nucleic Acids Res ; 42(16): 10731-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170085

RESUMO

Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.


Assuntos
RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Processamento de Terminações 3' de RNA , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...