Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 649: 79-86, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758482

RESUMO

Glutathione transferases are detoxification enzymes with multifaceted roles, including a role in the metabolism and scavenging of nitric oxide (NO) compounds in cells. Here, we explored the ability of Trametes versicolor glutathione transferases (GSTs) from the Omega class (TvGSTOs) to bind metal-nitrosyl compounds. TvGSTOs have been studied previously for their ligandin role and are interesting models to study protein‒ligand interactions. First, we determined the X-ray structure of the TvGSTO3S isoform bound to the dinitrosyl glutathionyl iron complex (DNGIC), a physiological compound involved in the storage of nitric oxide. Our results suggested a different binding mode compared to the one previously described in human GST Pi 1 (GSTP1). Then, we investigated the manner in which TvGSTO3S binds three nonphysiological metal-nitrosyl compounds with different metal cores (iron, ruthenium and osmium). We assayed sodium nitroprusside, a well-studied vasodilator used in cases of hypertensive crises or heart failure. Our results showed that the tested GST can bind metal-nitrosyls at two distinct binding sites. Thermal shift analysis with six isoforms of TvGSTOs identified TvGSTO6S as the best interactant. Using the Griess method, TvGSTO6S was found to improve the release of nitric oxide from sodium nitroprusside in vitro, whereas the effects of human GST alpha 1 (GSTA1) and GSTP1 were moderate. Our results open new structural perspectives for understanding the interactions of glutathione transferases with metal-nitrosyl compounds associated with the biochemical mechanisms of NO uptake/release in biological systems.


Assuntos
Óxido Nítrico , Trametes , Humanos , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Trametes/metabolismo , Glutationa Transferase/metabolismo , Ferro/metabolismo , Glutationa/metabolismo
2.
Front Microbiol ; 12: 669220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995334

RESUMO

The Gram-positive Bacillus methanolicus shows plasmid-dependent methylotrophy. This facultative ribulose monophosphate (RuMP) cycle methylotroph possesses two fructose bisphosphate aldolases (FBA) with distinct kinetic properties. The chromosomally encoded FBAC is the major glycolytic aldolase. The gene for the major gluconeogenic aldolase FBAP is found on the natural plasmid pBM19 and is induced during methylotrophic growth. The crystal structures of both enzymes were solved at 2.2 Å and 2.0 Å, respectively, and they suggested amino acid residue 51 to be crucial for binding fructose-1,6-bisphosphate (FBP) as substrate and amino acid residue 140 for active site zinc atom coordination. As FBAC and FBAP differed at these positions, site-directed mutagenesis (SDM) was performed to exchange one or both amino acid residues of the respective proteins. The aldol cleavage reaction was negatively affected by the amino acid exchanges that led to a complete loss of glycolytic activity of FBAP. However, both FBAC and FBAP maintained gluconeogenic aldol condensation activity, and the amino acid exchanges improved the catalytic efficiency of the major glycolytic aldolase FBAC in gluconeogenic direction at least 3-fold. These results confirmed the importance of the structural differences between FBAC and FBAP concerning their distinct enzymatic properties. In order to investigate the physiological roles of both aldolases, the expression of their genes was repressed individually by CRISPR interference (CRISPRi). The fba C RNA levels were reduced by CRISPRi, but concomitantly the fba P RNA levels were increased. Vice versa, a similar compensatory increase of the fba C RNA levels was observed when fba P was repressed by CRISPRi. In addition, targeting fba P decreased tkt P RNA levels since both genes are cotranscribed in a bicistronic operon. However, reduced tkt P RNA levels were not compensated for by increased RNA levels of the chromosomal transketolase gene tkt C.

3.
Antioxidants (Basel) ; 8(3)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889816

RESUMO

The special issue on Thioredoxin and Glutaredoxin systems (http://www [...].

4.
Proc Natl Acad Sci U S A ; 115(38): 9334-9335, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30166449

Assuntos
Cloroplastos , Escuridão , Luz
5.
PLoS One ; 12(3): e0174753, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28362814

RESUMO

Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b'-a' and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH), peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors) of PDI which contributes to understand why this protein family expanded along evolution.


Assuntos
Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Sequência de Aminoácidos , Catálise , Ácido Ditionitrobenzoico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Insulina/metabolismo , Ferro/metabolismo , Malato Desidrogenase (NADP+)/química , Malato Desidrogenase (NADP+)/genética , Malato Desidrogenase (NADP+)/metabolismo , Mutagênese Sítio-Dirigida , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Peroxirredoxinas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Sulfetos/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
6.
Plant Sci ; 255: 1-11, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28131337

RESUMO

Redox regulation of chloroplast enzymes via disulphide reduction is believed to control the rates of CO2 fixation. The study of the thioredoxin reduction pathways and of various target enzymes lead to the following guidelines.


Assuntos
Dióxido de Carbono/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Dissulfetos/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Tolueno/análogos & derivados , Evolução Biológica , Cloroplastos/enzimologia , Oxirredução , Tolueno/metabolismo
7.
Plant Sci ; 252: 257-266, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717462

RESUMO

A cDNA coding for a plastidic P2-type G6PDH isoform from poplar (Populus tremula x tremuloides) has been used to express and purify to homogeneity the mature recombinant protein with a N-terminus His-tag. The study of the kinetic properties of the recombinant enzyme showed an in vitro redox sensing modulation exerted by reduced DTT. The interaction with thioredoxins (TRXs) was then investigated. Five cysteine to serine variants (C145S - C175S - C183S - C195S - C242S) and a variant with a double substitution for Cys175 and Cys183 (C175S/C183S) have been generated, purified and biochemically characterized in order to investigate the specific role(s) of cysteines in terms of redox regulation and NADPH-dependent inhibition. Three cysteine residues (C145, C194, C242) are suggested to have a role in controlling the NADP+ access to the active site, and in stabilizing the NADPH regulatory binding site. Our results also indicate that the regulatory disulfide involves residues Cys175 and Cys183 in a position similar to those of chloroplastic P1-G6PDHs, but the modulation is exerted primarily by TRX m-type, in contrast to P1-G6PDH, which is regulated by TRX f. This unexpected specificity indicates differences in the mechanism of regulation, and redox sensing of plastidic P2-G6PDH compared to chloroplastic P1-G6PDH in higher plants.


Assuntos
Glucosefosfato Desidrogenase/fisiologia , Proteínas de Plantas/fisiologia , Plastídeos/metabolismo , Populus/metabolismo , Tiorredoxinas/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cisteína/química , Cisteína/fisiologia , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , Mutagênese Sítio-Dirigida , NADP/antagonistas & inibidores , NADP/química , Oxirredução , Via de Pentose Fosfato , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Populus/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Tiorredoxinas/química , Tiorredoxinas/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(24): 6779-84, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27226308

RESUMO

The Calvin-Benson cycle of carbon dioxide fixation in chloroplasts is controlled by light-dependent redox reactions that target specific enzymes. Of the regulatory members of the cycle, our knowledge of sedoheptulose-1,7-bisphosphatase (SBPase) is particularly scanty, despite growing evidence for its importance and link to plant productivity. To help fill this gap, we have purified, crystallized, and characterized the recombinant form of the enzyme together with the better studied fructose-1,6-bisphosphatase (FBPase), in both cases from the moss Physcomitrella patens (Pp). Overall, the moss enzymes resembled their counterparts from seed plants, including oligomeric organization-PpSBPase is a dimer, and PpFBPase is a tetramer. The two phosphatases showed striking structural homology to each other, differing primarily in their solvent-exposed surface areas in a manner accounting for their specificity for seven-carbon (sedoheptulose) and six-carbon (fructose) sugar bisphosphate substrates. The two enzymes had a similar redox potential for their regulatory redox-active disulfides (-310 mV for PpSBPase vs. -290 mV for PpFBPase), requirement for Mg(2+) and thioredoxin (TRX) specificity (TRX f > TRX m). Previously known to differ in the position and sequence of their regulatory cysteines, the enzymes unexpectedly showed unique evolutionary histories. The FBPase gene originated in bacteria in conjunction with the endosymbiotic event giving rise to mitochondria, whereas SBPase arose from an archaeal gene resident in the eukaryotic host. These findings raise the question of how enzymes with such different evolutionary origins achieved structural similarity and adapted to control by the same light-dependent photosynthetic mechanism-namely ferredoxin, ferredoxin-thioredoxin reductase, and thioredoxin.


Assuntos
Bryopsida , Proteínas de Cloroplastos , Evolução Molecular , Frutose-Bifosfatase , Monoéster Fosfórico Hidrolases , Tiorredoxinas , Bryopsida/enzimologia , Bryopsida/genética , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
9.
Sci Rep ; 5: 14881, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26445909

RESUMO

Since their discovery in the soil bacterium Sorangium cellulosum, epothilones have emerged as a valuable substance class with promising anti-tumor activity. Because of their benefits in the treatment of cancer and neurodegenerative diseases, epothilones are targets for drug design and pharmaceutical research. The final step of their biosynthesis - a cytochrome P450 mediated epoxidation of epothilone C/D to A/B by CYP167A1 (EpoK) - needs significant improvement, in particular regarding the efficiency of its redox partners. Therefore, we have investigated the ability of various hetero- and homologous redox partners to transfer electrons to EpoK. Hereby, a new hybrid system was established with conversion rates eleven times higher and Vmax of more than seven orders of magnitudes higher as compared with the previously described spinach redox chain. This hybrid system is the most efficient redox chain for EpoK described to date. Furthermore, P450s from So ce56 were identified which are able to convert epothilone D to 14-OH, 21-OH, 26-OH epothilone D and 7-ketone epothilone D. The latter one represents a novel epothilone derivative and is a suitable candidate for pharmacological tests. The results revealed myxobacterial P450s from S. cellulosum So ce56 as promising candidates for protein engineering for biotechnological production of epothilone derivatives.


Assuntos
Antineoplásicos/química , Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Elétrons , Epotilonas/química , Myxococcales/enzimologia , Antineoplásicos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Transporte de Elétrons , Epotilonas/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Expressão Gênica , Cetonas/química , Cetonas/metabolismo , Myxococcales/química , Oxirredução , Filogenia , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Acta Biochim Pol ; 62(2): 303-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098718

RESUMO

The Thermotoga maritima NADH:thioredoxin reductase (TmTR) contains FAD and a catalytic disulfide in the active center, and uses a relatively poorly studied physiological oxidant Grx-1-type glutaredoxin. In order to further assess the redox properties of TmTR, we used series of quinoidal and nitroaromatic oxidants with a wide range of single-electron reduction potentials (E(1)7, -0.49-0.09 V). We found that TmTR catalyzed the mixed single- and two-electron reduction of quinones and nitroaromatic compounds, which was much faster than the reduction of Grx-1. The reactivity of both groups of oxidants increased with an increase in their E(1)7, thus pointing to the absence of their structural specificity. The maximal rates of quinone reduction in the steady-state reactions were lower than the maximal rates of reduction of FAD by NADH, obtained in presteady-state experiments. The mixed-type reaction inhibition by NAD(+) was consistent with its competition for a NADH binding site in the oxidized enzyme form, and also with the reoxidation of the reduced enzyme form. The inhibition data yielded a value of the standard potential for TmTR of -0.31±0.03 V at pH 7.0, which may correspond to the FAD/FADH2 redox couple. Overall, the mechanism of quinone- and nitroreductase reactions of T. maritima TR was similar to the previously described mechanism of Arabidopsis thaliana TR, and points to their prooxidant and possibly cytotoxic role.


Assuntos
Quinonas/metabolismo , Thermotoga maritima/enzimologia , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Flavina-Adenina Dinucleotídeo/metabolismo , Glutarredoxinas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , NAD/metabolismo , Nitrorredutases/metabolismo , Especificidade por Substrato , Termodinâmica
11.
Appl Environ Microbiol ; 80(20): 6316-27, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25107961

RESUMO

The first steps of wood degradation by fungi lead to the release of toxic compounds known as extractives. To better understand how lignolytic fungi cope with the toxicity of these molecules, a transcriptomic analysis of Phanerochaete chrysosporium genes was performed in the presence of oak acetonic extracts. It reveals that in complement to the extracellular machinery of degradation, intracellular antioxidant and detoxification systems contribute to the lignolytic capabilities of fungi, presumably by preventing cellular damages and maintaining fungal health. Focusing on these systems, a glutathione transferase (P. chrysosporium GTT2.1 [PcGTT2.1]) has been selected for functional characterization. This enzyme, not characterized so far in basidiomycetes, has been classified first as a GTT2 compared to the Saccharomyces cerevisiae isoform. However, a deeper analysis shows that the GTT2.1 isoform has evolved functionally to reduce lipid peroxidation by recognizing high-molecular-weight peroxides as substrates. Moreover, the GTT2.1 gene has been lost in some non-wood-decay fungi. This example suggests that the intracellular detoxification system evolved concomitantly with the extracellular ligninolytic machinery in relation to the capacity of fungi to degrade wood.


Assuntos
Glutationa Transferase/metabolismo , Phanerochaete/efeitos dos fármacos , Phanerochaete/genética , Extratos Vegetais/farmacologia , Quercus/química , Acetona/química , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Glutationa Transferase/genética , Inativação Metabólica , Isoenzimas , Lignina/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo/efeitos dos fármacos , Peróxidos/química , Peróxidos/metabolismo , Phanerochaete/metabolismo , Extratos Vegetais/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Madeira/microbiologia
13.
Mol Plant ; 7(1): 187-205, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24203231

RESUMO

A functional relationship between monothiol glutaredoxins and BolAs has been unraveled by genomic analyses and in several high-throughput studies. Phylogenetic analyses coupled to transient expression of green fluorescent protein (GFP) fusions indicated that, in addition to the sulfurtransferase SufE1, which contains a C-terminal BolA domain, three BolA isoforms exist in Arabidopsis thaliana, BolA1 being plastidial, BolA2 nucleo-cytoplasmic, and BolA4 dual-targeted to mitochondria and plastids. Binary yeast two-hybrid experiments demonstrated that all BolAs and SufE1, via its BolA domain, can interact with all monothiol glutaredoxins. Most interactions between protein couples of the same subcellular compartment have been confirmed by bimolecular fluorescence complementation. In vitro experiments indicated that monothiol glutaredoxins could regulate the redox state of BolA2 and SufE1, both proteins possessing a single conserved reactive cysteine. Indeed, a glutathionylated form of SufE1 lost its capacity to activate the cysteine desulfurase, Nfs2, but it is reactivated by plastidial glutaredoxins. Besides, a monomeric glutathionylated form and a dimeric disulfide-bridged form of BolA2 can be preferentially reduced by the nucleo-cytoplasmic GrxS17. These results indicate that the glutaredoxin-BolA interaction occurs in several subcellular compartments and suggest that a redox regulation mechanism, disconnected from their capacity to form iron-sulfur cluster-bridged heterodimers, may be physiologically relevant for BolA2 and SufE1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glutarredoxinas/metabolismo , Sulfurtransferases/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Domínio Catalítico , Sequência Conservada , Proteínas de Ligação a DNA/química , Ativação Enzimática , Espaço Intracelular/metabolismo , Oxirredução , Fotossíntese , Filogenia , Ligação Proteica , Transporte Proteico
14.
PLoS One ; 8(11): e80298, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278272

RESUMO

Glutathione transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes and endogenous metabolism. The distribution of fungal-specific class A GSTs was investigated in saprotrophic fungi revealing a recent diversification within this class. Biochemical characterization of eight GSTFuA isoforms from Phanerochaete chrysosporium and Coprinus cinereus demonstrated functional diversity in saprotrophic fungi. The three-dimensional structures of three P. chrysosporium isoforms feature structural differences explaining the functional diversity of these enzymes. Competition experiments between fluorescent probes, and various molecules, showed that these GSTs function as ligandins with various small aromatic compounds, derived from lignin degradation or not, at a L-site overlapping the glutathione binding pocket. By combining genomic data with structural and biochemical determinations, we propose that this class of GST has evolved in response to environmental constraints induced by wood chemistry.


Assuntos
Coprinus/enzimologia , Glutationa Transferase/metabolismo , Phanerochaete/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Cristalização , Primers do DNA , Glutationa Transferase/química , Glutationa Transferase/genética , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência
15.
Plant Physiol Biochem ; 73: 266-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24161756

RESUMO

In plant cells, the plastidial glucose 6-phosphate dehydrogenase (P2-G6PDH, EC 1.1.1.49) represents one of the most important sources of NADPH. However, previous studies revealed that both native and recombinant purified P2-G6PDHs show a great instability and a rapid loss of catalytic activity. Therefore it has been difficult to describe accurately the catalytic and physico-chemical properties of these isoforms. The plastidial G6PDH encoding sequence from barley roots (Hordeum vulgare cv. Nure), devoid of a long plastidial transit peptide, was expressed as recombinant protein in Escherichia coli, either untagged or with an N-terminal his-tag. After purification from both the soluble fraction and inclusion bodies, we have explored its kinetic parameters, as well as its sensitivity to reduction. The obtained results are consistent with values determined for other P2-G6PDHs previously purified from barley roots and from other land plants. Overall, these data shed light on the catalytic mechanism of plant P2-G6PDH, summarized in a proposed model in which the sequential mechanism is very similar to the mammalian cytosolic G6PDH. This study provides a rational basis to consider the recombinant barley root P2-G6PDH as a good model for further kinetic and structural studies.


Assuntos
Genes de Plantas , Glucosefosfato Desidrogenase/genética , Hordeum/genética , NADP/genética , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plastídeos/genética , Sequência de Aminoácidos , Animais , Escherichia coli , Glucosefosfato Desidrogenase/metabolismo , Hordeum/enzimologia , Hordeum/metabolismo , Mamíferos , Dados de Sequência Molecular , NADP/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Isoformas de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Front Plant Sci ; 4: 105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23641245

RESUMO

Living organisms are subjected to oxidative stress conditions which are characterized by the production of reactive oxygen, nitrogen, and sulfur species. In plants as in other organisms, many of these compounds have a dual function as they damage different types of macromolecules but they also likely fulfil an important role as secondary messengers. Owing to the reactivity of their thiol groups, some protein cysteine residues are particularly prone to oxidation by these molecules. In the past years, besides their recognized catalytic and regulatory functions, the modification of cysteine thiol group was increasingly viewed as either protective or redox signaling mechanisms. The most physiologically relevant reversible redox post-translational modifications (PTMs) are disulfide bonds, sulfenic acids, S-glutathione adducts, S-nitrosothiols and to a lesser extent S-sulfenyl-amides, thiosulfinates and S-persulfides. These redox PTMs are mostly controlled by two oxidoreductase families, thioredoxins and glutaredoxins. This review focuses on recent advances highlighting the variety and physiological roles of these PTMs and the proteomic strategies used for their detection.

17.
FEBS Lett ; 587(14): 2125-30, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23711374

RESUMO

Glutathione transferases (GSTs) are known to transfer glutathione onto small hydrophobic molecules in detoxification reactions. The GST Ure2pB1 from Phanerochaete chrysosporium exhibits atypical features, i.e. the presence of two glutathione binding sites and a high affinity towards oxidized glutathione. Moreover, PcUre2pB1 is able to efficiently deglutathionylate GS-phenacylacetophenone. Catalysis is not mediated by the cysteines of the protein but rather by the one of glutathione and an asparagine residue plays a key role in glutathione stabilization. Interestingly PcUre2pB1 interacts in vitro with a GST of the omega class. These properties are discussed in the physiological context of wood degrading fungi.


Assuntos
Proteínas Fúngicas/química , Glutationa Transferase/química , Phanerochaete/enzimologia , Cristalografia por Raios X , Ditiotreitol/química , Glutationa/química , Ligação de Hidrogênio , Insulina/química , Cinética , Modelos Moleculares , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Substâncias Redutoras/química
18.
J Plant Physiol ; 170(7): 707-11, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23466129

RESUMO

Gravity perception and gravitropic response are essential for plant development. In herbaceous species, it is widely accepted that one of the primary events in gravity perception involves the displacement of amyloplasts within specialized cells. However, the early signaling events leading to stem reorientation are not fully known, especially in woody species in which primary and secondary growth occur. Thirty-six percent of the identified proteins that were differentially expressed after gravistimulation were established as potential Thioredoxin targets. In addition, Thioredoxin h expression was induced following gravistimulation. In situ immunolocalization indicated that Thioredoxin h protein co-localized with the amyloplasts located in the endodermal cells. These investigations suggest the involvement of Thioredoxin h in the first events of signal transduction in inclined poplar stems, leading to reaction wood formation.


Assuntos
Gravitropismo/fisiologia , Caules de Planta/fisiologia , Populus/fisiologia , Tiorredoxina h/metabolismo , Gravitação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/fisiologia , Populus/citologia , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiorredoxina h/genética , Fatores de Tempo
19.
Microb Biotechnol ; 6(3): 248-63, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23279857

RESUMO

Fungal degradation of wood is mainly restricted to basidiomycetes, these organisms having developed complex oxidative and hydrolytic enzymatic systems. Besides these systems, wood-decaying fungi possess intracellular networks allowing them to deal with the myriad of potential toxic compounds resulting at least in part from wood degradation but also more generally from recalcitrant organic matter degradation. The members of the detoxification pathways constitute the xenome. Generally, they belong to multigenic families such as the cytochrome P450 monooxygenases and the glutathione transferases. Taking advantage of the recent release of numerous genomes of basidiomycetes, we show here that these multigenic families are extended and functionally related in wood-decaying fungi. Furthermore, we postulate that these rapidly evolving multigenic families could reflect the adaptation of these fungi to the diversity of their substrate and provide keys to understand their ecology. This is of particular importance for white biotechnology, this xenome being a putative target for improving degradation properties of these fungi in biomass valorization purposes.


Assuntos
Adaptação Fisiológica/genética , Basidiomycota/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa Transferase/metabolismo , Redes e Vias Metabólicas/genética , Madeira/química , Madeira/microbiologia , Basidiomycota/genética , Basidiomycota/metabolismo , Basidiomycota/fisiologia , Biodegradação Ambiental , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Glutationa Transferase/genética , Madeira/metabolismo , Xenobióticos/metabolismo
20.
Biochimie ; 95(2): 336-46, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23063695

RESUMO

Omega glutathione transferases (GSTO) constitute a family of proteins with variable distribution throughout living organisms. It is notably expanded in several fungi and particularly in the wood-degrading fungus Phanerochaete chrysosporium, raising questions concerning the function(s) and potential redundancy of these enzymes. Within the fungal families, GSTOs have been poorly studied and their functions remain rather sketchy. In this study, we have used fluorescent compounds as activity reporters to identify putative ligands. Experiments using 5-chloromethylfluorescein diacetate as a tool combined with mass analyses showed that GSTOs are able to cleave ester bonds. Using this property, we developed a specific activity-based profiling method for identifying ligands of PcGSTO3 and PcGSTO4. The results suggest that GSTOs could be involved in the catabolism of toxic compounds like tetralone derivatives. Biochemical investigations demonstrated that these enzymes are able to catalyze deglutathionylation reactions thanks to the presence of a catalytic cysteine residue. To access the physiological function of these enzymes and notably during the wood interaction, recombinant proteins have been immobilized on CNBr Sepharose and challenged with beech wood extracts. Coupled with GC-MS experiments this ligand fishing method allowed to identify terpenes as potential substrates of Omega GST suggesting a physiological role during the wood-fungus interactions.


Assuntos
Proteínas Fúngicas/química , Glutationa Transferase/química , Phanerochaete/enzimologia , Terpenos/metabolismo , Tetralonas/metabolismo , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Compostos Cromogênicos , Cisteína/química , Fagus/química , Fluoresceínas , Proteínas Fúngicas/genética , Glutationa Transferase/genética , Proteínas Imobilizadas/química , Proteínas Imobilizadas/genética , Isoenzimas/química , Isoenzimas/genética , Cinética , Phanerochaete/química , Extratos Vegetais/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sefarose , Espectrometria de Fluorescência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...