Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Med Sci ; 42(2): 249-266, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35079960

RESUMO

OBJECTIVE: Intracerebral hemorrhage (ICH) refers to predominant, sporadic, and non-traumatic bleeding in the brain parenchyma. The PI3K/AKT/mTOR signaling pathway is an important signal transduction pathway regulated by enzyme-linked receptors and has many biological functions in mammals. It plays a key role in neuronal metabolism, gene expression regulation, and tissue homeostasis in the healthy and diseased brain. METHODS: In the present study, the role of the PI3K/AKT/mTOR pathway inhibitor chrysophanol (CPH) (10 mg/kg and 20 mg/kg, orally) in the improvement of ICH-associated neurological defects in rats was investigated. Autologous blood (20 µL/5 min/unilateral/intracerebroventricular) mimics ICH-like defects involving cellular and molecular dysfunction and neurotransmitter imbalance. The current study also included various behavioral assessments to examine cognition, memory, and motor and neuromuscular coordination. The protein expression levels of PI3K, AKT, and mTOR as well as myelin basic protein and apoptotic markers, such as Bax, Bcl-2, and caspase-3, were examined using ELISA kits. Furthermore, the levels of various neuroinflammatory cytokines and oxidative stress markers were assessed. Additionally, the neurological severity score, brain water content, gross brain pathology, and hematoma size were used to indicate neurological function and brain edema. RESULTS: CPH was found to be neuroprotective by restoring neurobehavioral alterations and significantly reducing the elevated PI3K, AKT, and mTOR protein levels, and modulating the apoptotic markers such as Bax, Bcl-2, and caspase-3 in rat brain homogenate. CPH substantially reduced the inflammatory cytokines like interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α. CPH administration restored the neurotransmitters GABA, glutamate, acetylcholine, dopamine, and various oxidative stress markers. CONCLUSION: Our results show that CPH may be a promising therapeutic approach for overcoming neuronal damage caused by the overexpression of the PI3K/AKT/mTOR signaling pathway in ICH-induced neurological dysfunctions in rats.


Assuntos
Fármacos Neuroprotetores , Fosfatidilinositol 3-Quinases , Animais , Ratos , Fosfatidilinositol 3-Quinases/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Caspase 3/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína X Associada a bcl-2/metabolismo , Ratos Sprague-Dawley , Hemorragia Cerebral/tratamento farmacológico , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Serina-Treonina Quinases TOR/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Citocinas/metabolismo , Modelos Teóricos , Mamíferos/metabolismo
2.
Curr Med Sci ; 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35099677

RESUMO

OBJECTIVE: Intracerebral hemorrhage (ICH) refers to predominant, sporadic, and non-traumatic bleeding in the brain parenchyma. The PI3K/AKT/mTOR signaling pathway is an important signal transduction pathway regulated by enzyme-linked receptors and has many biological functions in mammals. It plays a key role in neuronal metabolism, gene expression regulation, and tissue homeostasis in the healthy and diseased brain. METHODS: In the present study, the role of the PI3K/AKT/mTOR pathway inhibitor chrysophanol (CPH) (10 mg/kg and 20 mg/kg, orally) in the improvement of ICH-associated neurological defects in rats was investigated. Autologous blood (20 µL/5 min/unilateral/intracerebroventricular) mimics ICH-like defects involving cellular and molecular dysfunction and neurotransmitter imbalance. The current study also included various behavioral assessments to examine cognition, memory, and motor and neuromuscular coordination. The protein expression levels of PI3K, AKT, and mTOR as well as myelin basic protein and apoptotic markers, such as Bax, Bcl-2, and caspase-3, were examined using ELISA kits. Furthermore, the levels of various neuroinflammatory cytokines and oxidative stress markers were assessed. Additionally, the neurological severity score, brain water content, gross brain pathology, and hematoma size were used to indicate neurological function and brain edema. RESULTS: CPH was found to be neuroprotective by restoring neurobehavioral alterations and significantly reducing the elevated PI3K, AKT, and mTOR protein levels, and modulating the apoptotic markers such as Bax, Bcl-2, and caspase-3 in rat brain homogenate. CPH substantially reduced the inflammatory cytokines like interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α. CPH administration restored the neurotransmitters GABA, glutamate, acetylcholine, dopamine, and various oxidative stress markers. CONCLUSION: Our results show that CPH may be a promising therapeutic approach for overcoming neuronal damage caused by the overexpression of the PI3K/AKT/mTOR signaling pathway in ICH-induced neurological dysfunctions in rats.

3.
Curr Rev Clin Exp Pharmacol ; 17(3): 174-191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34455956

RESUMO

PI3K/AKT/mTOR (phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin) signaling pathway is an important signal transduction pathway mediated by enzyme-linked receptors with many biological functions in mammals. This pathway modulates the epigenetic modification of DNA and target gene histones and plays a significant role in regulating biological activity, disease progression, oncogenesis, and cancer progression. PI3K/AKT/mTOR signaling pathway involves and mediates many cellular processes such as nutrient uptake, proliferation, anabolic reactions, and cell survival. Several studies have shown that PI3K/AKT/mTOR has been a promising therapeutic approach to intracerebral hemorrhage (ICH). ICH is characterized by the progressive development of hematoma, which leads to the structural destabilization of the neurons and glial cells, leading to neuronal deformation, further contributing to mitochondrial dysfunction, membrane depolarization, oligaemia, and neurotransmitter imbalance. Partial suppression of cell metabolism and necrosis can occur, depending on the degree of mitochondrial dysfunction. Therefore in the following review, we discuss whether or not the activation of the PI3K/AKT/mTOR signaling pathway could minimize neuronal dysfunction following ICH. We further elaborate the review by discussing the updated pathophysiology of brain hemorrhage and the role of molecular targets in other neurodegenerative diseases. This review provides current approachable disease treatment in various disease states, single and dual PI3K/AKT/mTOR signaling pathway modulators.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Hemorragia Cerebral/tratamento farmacológico , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
IBRO Rep ; 8: 101-114, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32368686

RESUMO

Intracerebral hemorrhage (ICH) may be caused by trauma, aneurysm and arteriovenous malformation, as can any bleeding within the intracranial vault, including brain parenchyma and adjacent meningeal spaces (aneurism and atreovenous malformation). ICH is the cerebral stroke with the least treatable form. Over time, intraventricular hemorrhage (IVH) is associated with ICH, which contributes to hydrocephalus, and the major cause of most hemorrhagic death (Due to the cerebral hemorrhage and post hemorrhagic surgeries). Most patients suffer from memory impairment, grip strength, posture, and cognitive dysfunctions attributable to cerebral hemorrhage or post-brain hemorrhagic surgery. Nevertheless, a combined model of ICH based IVH is not present pre-clinically. Autologous blood (ALB) injection (20 µl/5 min) in the rat brain triggers hemorrhage, such as factors that further interfere with the normal functioning of neuroinflammatory cytokines, oxidative stress, and neurotransmitter dysfunction, such as CoQ10 insufficiency and dysregulation of mitochondrial ETC-complexes. For the prevention of post-brain hemorrhagic behavioral and neurochemical dysfunctions, there is no specific drug treatment available, only available therapy used to provide symptomatic relief. The current study reveals that long-term administration of Solanesol (SNL) 40 and 60 mg/kg alone and in combination with available drug therapy Donepezil (DNP) 3 mg/kg, Memantine (MEM) 20 mg/kg, Celecoxib (CLB) 20 mg/kg, Pregabalin (PGB) 30 mg/kg, may provide the neuroprotective effect by improving behavioral and neurochemical deficits, and gross pathological changes in ALB induced combined experimental model of ICH-IVH in post brain hemorrhagic conditions in rats. Thus, SNL can be a potential therapeutic approach to improve neuronal mitochondrial dysfunction associated with post brain hemorrhagic behavioral and neurochemical alterations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA