Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Molecules ; 25(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255548

RESUMO

The aim of this study was to determine the effect of gold and silver nanoparticles on the activity of antioxidant enzymes (ascorbate peroxidase (APX), superoxide dismutase (SOD), guaiacol peroxidase (POX), and catalase (CAT)), the free radical scavenging capacity, and the total polyphenol capacity of lavender (Lavandula angustifolia Mill.) cultivar "Munstead" propagated in vitro. In the experiment, fragments of lavender plants were cultivated in vitro on medium with the addition of 1, 2, 5, 10, 20, and 50 mg∙dm-3 of AgNPs or AuNPs (particle sizes 24.2 ± 2.4 and 27.5 ± 4.8 nm, respectively). It was found that the nanoparticles increase the activity of the antioxidant enzymes APX and SOD; however, the reaction depends on the NP concentration. The highest APX activity is found in plants propagated on media with 2 and 5 mg∙dm-3 of AgNPs. AuNPs significantly increase the APX activity when added to media with a concentration of 10 mg∙dm-3. The highest SOD activity is recorded at 2 and 5 mg∙dm-3 AgNP and AuNP concentrations. The addition of higher concentrations of nanoparticles to culture media results in a decrease in the APX and SOD activity. The addition of AuNPs to culture media at concentrations from 2 to 50 mg∙dm-3 increases the POX activity in comparison to its activity when AgNPs are added to the culture media. No significant influence of NPs on the increase in CAT activity was demonstrated. AgNPs and AuNPs increased the free radical scavenging capacity (ABTS•+). The addition of NPs at concentrations of 2 and 5 mg∙dm-3 increased the production of polyphenols; however, in lower concentrations it decreased their content in lavender tissues.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/química , Espécies Reativas de Oxigênio/metabolismo
4.
Plant Sci ; 301: 110673, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33218638

RESUMO

Root system architecture (RSA) manipulation may improve water and nutrient capture by plants under normal and extreme climate conditions. With the aim of initiating the genetic dissection of RSA in tomato, we established a defined ontology that allowed the curated annotation of the observed phenotypes on 12 traits at four consecutive growth stages. In addition, we established a quick approach for the molecular identification of the mutations associated with the trait-of-interest by using a whole-genome sequencing approach that does not require the building of an additional mapping population. As a proof-of-concept, we screened 4543 seedlings from 300 tomato M3 lines (Solanum lycopersicum L. cv. Micro-Tom) generated by chemical mutagenesis with ethyl methanesulfonate. We studied the growth and early development of both the root system (primary and lateral roots) and the aerial part of the seedlings as well as the wound-induced adventitious roots emerging from the hypocotyl. We identified 659 individuals (belonging to 203 M3 lines) whose early seedling and RSA phenotypes differed from those of their reference background. We confirmed the genetic segregation of the mutant phenotypes affecting primary root length, seedling viability and early RSA in 31 M4 families derived from 15 M3 lines selected in our screen. Finally, we identified a missense mutation in the SlCESA3 gene causing a seedling-lethal phenotype with short roots. Our results validated the experimental approach used for the identification of tomato mutants during early growth, which will allow the molecular identification of the genes involved.


Assuntos
Genoma de Planta/genética , Solanum lycopersicum/genética , Metanossulfonato de Etila , Solanum lycopersicum/crescimento & desenvolvimento , Mutagênese , Mutação , Fenótipo , Plântula/genética , Plântula/crescimento & desenvolvimento , Sequenciamento Completo do Genoma
5.
Molecules ; 24(3)2019 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30744099

RESUMO

The aim of this study was to determine how the addition of gold and silver nanoparticles to culture media affects the composition of essential oils extracted from Lavandula angustifolia propagated on MS media with the addition of 10 and 50 mg•dm-3 of gold (24.2 ± 2.4 nm) and silver (27.5 ± 4.8 nm) nanocolloids. The oil extracted from the lavender tissues propagated on the medium with 10 mg•dm-3 AgNPs (silver nanoparticles) differed the most with respect to the control; oil-10 compounds were not found at all, and 13 others were detected which were not present in the control oil. The addition of AuNPs (gold nanoparticles) and AgNPs to the media resulted in a decrease of lower molecular weight compounds (e.g., α- and ß-pinene, camphene, δ-3-carene, p-cymene, 1,8-cineole, trans-pinocarveol, camphoriborneol), which were replaced by those of a higher molecular weight (τ- and α-cadinol 9-cedranone, cadalene, α-bisabolol, cis-14-nor-muurol-5-en-4-one, (E,E)-farnesol).


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Ouro , Lavandula/química , Nanopartículas Metálicas , Óleos Voláteis/química , Prata , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Fenótipo , Prata/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...