Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 100(4): 1116-1126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282075

RESUMO

Squaraine dyes possess sharp far-red active transition with high extinction coefficient and form aggregates on TiO2 surface. Aggregation of dyes on TiO2 has been considered as a detrimental factor for DSSC device performance, which can be controlled by appending alkyl groups to the dye structures. Hence by integrating alkylated (alkyl groups with both in-plane and out-of-plane) aryl group with indoline moiety to make it compatible with other electrolytes and for controlling the dye-aggregation, a series of squaraine acceptor-based dyes SQA4-6 have been designed and synthesized. SQA4-6 dyes showed absorption between 642 and 653 nm (λmax), photophysical and electrochemical studies indicated that the HOMO energy levels of this sets of dyes are well aligned with the potentials of I-/ I 3 - and [Co(bpy)3]2+/3+ redox shuttles for better dye regeneration process. DSSC device efficiency of 3% has been achieved for SQA5 dye with iodolyte (I-/ I 3 - ) electrolyte in the presence of 0.3 mM of chenodeoxycholic acid (CDCA). The IPCE profile of DSSC device fabricated with SQA4-6 dyes indicated the contribution of aggregated structures for the photocurrent generation.

2.
Photochem Photobiol ; 99(2): 529-537, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36582053

RESUMO

In dye-sensitized solar cell, modulating the electronic properties of the sensitizer by varying the donor, π-spacer, acceptor and anchoring groups help optimizing the structure of the dye for better device performance. Here, a donor-acceptor-donor-based unsymmetrical thiosquaraine sensitizer (SQ5S) has been designed and synthesized. Photophysical, electrochemical, theoretical and photovoltaic characterizations of SQ5S dye have been compared with its oxygen analog, SQ5. The incorporation of the sulfur atom in the acceptor unit of SQ5S dye showed an intense peak at 688 nm, which was 38 nm of red-shifted and showed the panchromatic light harvesting response with the onset of 850 nm compared with SQ5 dye. The LUMO and HOMO energy levels are well aligned with the conduction band of TiO2 and the redox potential of electrolyte for the charge injection and the dye-regeneration processes, respectively. Photovoltaic efficiency of 1.51% (VOC 610 mV, JSC 3.07 mA cm-2 , ff 81%) has been achieved for SQ5S dye, whereas SQ5 showed the device performance of 5.43% (VOC 723 mV, JSC 9.3 mA cm-2 , ff 80%). The decreased device performance for the dye SQ5S has been attributed to the favorable intersystem crossing process associated with the photoexcited SQ5S that reduces the driving force for the charge injection process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA