Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 5(21): 3872-7, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278762

RESUMO

Only optically active excitons can be identified by transient absorption spectroscopy, and the actual mechanisms of exciton relaxation in nanoscale systems remain unknown as dipole-forbidden transitions and charge-transfer states are not accounted for. Focusing on interacting (6,4) and (8,4) carbon nanotubes (CNTs), we show that dark excitons largely determine the relaxation pathways for photogenerated excitons in CNT bundles. New channels appear involving asymmetric electron-hole excitations within the same CNT and charge-transfer states, in which the electron and hole are confined to separate CNTs. The energy and charge transfers are facilitated by coupling to both low- and high-frequency phonons. Radial breathing modes are particularly important because they distort the CNT geometry, induce crossings of electronic states, and modulate coupling between CNTs. The time domain simulations reported herein uncover the quantum states and phonon modes that contribute to exciton relaxation in a CNT cluster, elucidating the complete relaxation mechanism. The established role of optically dark states pertains to nonequilibrium dynamics in nanoscale materials in general.

2.
Acc Chem Res ; 46(6): 1280-9, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23459543

RESUMO

Third-generation photovolatics require demanding cost and power conversion efficiency standards, which may be achieved through efficient exciton multiplication. Therefore, generating more than one electron-hole pair from the absorption of a single photon has vast ramifications on solar power conversion technology. Unlike their bulk counterparts, irradiated semiconductor quantum dots exhibit efficient exciton multiplication, due to confinement-enhanced Coulomb interactions and slower nonradiative losses. The exact characterization of the complicated photoexcited processes within quantum-dot photovoltaics is a work in progress. In this Account, we focus on the photophysics of nanocrystals and investigate three constituent processes of exciton multiplication, including photoexcitation, phonon-induced dephasing, and impact ionization. We quantify the role of each process in exciton multiplication through ab initio computation and analysis of many-electron wave functions. The probability of observing a multiple exciton in a photoexcited state is proportional to the magnitude of electron correlation, where correlated electrons can be simultaneously promoted across the band gap. Energies of multiple excitons are determined directly from the excited state wave functions, defining the threshold for multiple exciton generation. This threshold is strongly perturbed in the presence of surface defects, dopants, and ionization. Within a few femtoseconds following photoexcitation, the quantum state loses coherence through interactions with the vibrating atomic lattice. The phase relationship between single excitons and multiple excitons dissipates first, followed by multiple exciton fission. Single excitons are coupled to multiple excitons through Coulomb and electron-phonon interactions, and as a consequence, single excitons convert to multiple excitons and vice versa. Here, exciton multiplication depends on the initial energy and coupling magnitude and competes with electron-phonon energy relaxation. Multiple excitons are generated through impact ionization within picoseconds. The basis of exciton multiplication in quantum dots is the collective result of photoexcitation, dephasing, and nonadiabatic evolution. Each process is characterized by a distinct time-scale, and the overall multiple exciton generation dynamics is complete by about 10 ps. Without relying on semiempirical parameters, we computed quantum mechanical probabilities of multiple excitons for small model systems. Because exciton correlations and coherences are microscopic, quantum properties, results for small model systems can be extrapolated to larger, realistic quantum dots.

3.
J Chem Phys ; 137(22): 22A545, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23249082

RESUMO

A simple surface hopping method for nonadiabatic molecular dynamics is developed. The method derives from a stochastic modeling of the time-dependent Schrödinger and master equations for open systems and accounts simultaneously for quantum mechanical branching in the otherwise classical (nuclear) degrees of freedom and loss of coherence within the quantum (electronic) subsystem due to coupling to nuclei. Electronic dynamics in the Hilbert space takes the form of a unitary evolution, intermittent with stochastic decoherence events that are manifested as a localization toward (adiabatic) basis states. Classical particles evolve along a single potential energy surface and can switch surfaces only at the decoherence events. Thus, decoherence provides physical justification of surface hopping, obviating the need for ad hoc surface hopping rules. The method is tested with model problems, showing good agreement with the exact quantum mechanical results and providing an improvement over the most popular surface hopping technique. The method is implemented within real-time time-dependent density functional theory formulated in the Kohn-Sham representation and is applied to carbon nanotubes and graphene nanoribbons. The calculated time scales of non-radiative quenching of luminescence in these systems agree with the experimental data and earlier calculations.

4.
J Phys Chem B ; 116(19): 5579-87, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22530702

RESUMO

The guanine-cytosine (GC) radical anion and its interaction with a single water molecule is studied using ab initio and density functional methods. Z-averaged second-order perturbation theory (ZAPT2) was applied to GC radical anion for the first time. Predicted spin densities show that the radical character is localized on cytosine. The Watson-Crick monohydrated GC anion is compared to neutral GC·H2O, as well as to the proton-transferred analogue on the basis of structural and energetic properties. In all three systems, local minima are identified that correspond to water positioned in the major and minor grooves of macromolecular DNA. On the anionic surface, two novel structures have water positioned above or below the GC plane. On the neutral and anionic surfaces, the global minimum can be described as water interacting with the minor groove. These structures are predicted to have hydration energies of 9.7 and 11.8 kcal mol(-1), respectively. Upon interbase proton-transfer (PT), the anionic global minimum has water positioned in the major groove, and the hydration energy increases to 13.4 kcal mol(-1). PT GC·H2O(•-) has distonic character; the radical character resides on cytosine, while the negative charge is localized on guanine. The effects of proton transfer are further investigated through the computed adiabatic electron affinities (AEA) of GC and monohydrated GC, and the vertical detachment energies (VDE) of the corresponding anions. Monohydration increases the AEAs and VDEs by only 0.1 eV, while proton-transfer increases the VDEs substantially (0.8 eV). The molecular charge distribution of monohydrated guanine-cytosine radical anion depends heavily on interbase proton transfer.


Assuntos
Pareamento de Bases , Citosina/química , Elétrons , Guanina/química , Prótons , Ânions/química , DNA/química , Modelos Moleculares , Estrutura Molecular , Eletricidade Estática , Água/química
5.
J Chem Phys ; 136(6): 064701, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22360209

RESUMO

Multi-exciton generation (MEG), the creation of more than one electron-hole pair per photon absorbed, occurs for excitation energies greater than twice the bandgap (E(g)). Imperfections on the surface of quantum dots, in the form of atomic vacancies or incomplete surface passivation, lead to less than ideal efficiencies for MEG in semiconductor quantum dots. The energetic onset for MEG is computed with and without surface defects for nanocrystals, Pb(4)Se(4), Si(7), and Si(7)H(2). Modeling the correlated motion of two electrons across the bandgap requires a theoretical approach that incorporates many-body effects, such as post-Hartree-Fock quantum chemical methods. We use symmetry-adapted cluster with configuration interaction to study the excited states of nanocrystals and to determine the energetic threshold of MEG. Under laboratory conditions, lead selenide nanocrystals produce multi-excitons at excitation energies of 3 E(g), which is attributed to the large dielectric constant, small Coulomb interaction, and surface defects. In the absence of surface defects the MEG threshold is computed to be 2.6 E(g). For lead selenide nanocrystals with non-bonding selenium valence electrons, Pb(3)Se(4), the MEG threshold increases to 2.9 E(g). Experimental evidence of MEG in passivated silicon quantum dots places the onset of MEG at 2.4 E(g). Our calculations show that the lowest multi-exciton state has an excitation energy of 2.5 E(g), and surface passivation enhances the optical activity of MEG. However, incomplete surface passivation resulting in a neutral radical on the surface drives the MEG threshold to 4.4 E(g). Investigating the mechanism of MEG at the atomistic level provides explanations for experimental discrepancies and suggests ideal materials for photovoltaic conversion.

6.
Nat Chem ; 4(1): 8-10, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22169862
7.
J Chem Theory Comput ; 7(9): 2842-51, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-26605475

RESUMO

All intermolecular interactions involve London dispersion forces. The accurate treatment of dispersion is essential for the computation of realistic interaction potentials. In general, the most reliable method for computing intermolecular interactions is coupled-cluster singles and doubles with perturbative triples [CCSD(T)] in conjunction with a sufficiently flexible Gaussian atomic orbital basis set, a combination which is not routinely applicable due to its excessive computational demands (CPU time, memory, storage). Recently, many theoretical methods have been developed that attempt to account for dispersion in a more efficient manner. It is well-known that dispersion interactions are more difficult to compute in some systems than others; for example, π-π dispersion is notoriously difficult, while alkane-alkane dispersion is relatively simple to compute. In this work, numerous theoretical methods are tested for their ability to compute reliable interaction energies in particularly challenging systems, namely, the P2, PCCP, and NCCN dimers. Symmetry-adapted perturbation theory (SAPT) is applied to these dimers to demonstrate their sensitivity to the treatment of dispersion. Due to the small size of these systems, highly accurate CCSD(T) potential energy curves could be estimated at the complete basis set limit. Numerous theoretical methods are tested against the reliable CCSD(T) benchmarks. Methods using a treatment of dispersion that relies on time-dependent density functional theory (TDDFT) response functions are found to be the most reliable.

9.
J Phys Chem B ; 113(23): 8142-8, 2009 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19445496

RESUMO

The interaction of one water molecule with the guanine-cytosine radical cation has been studied with ab initio and density functional methods in order to help elucidate the nature of oxidized aqueous DNA. The theoretical spin density of [GC]*(+) reveals that the radical center is localized on guanine. The adiabatic ionization potential lowers from 7.63 to 6.71 eV in concurrence with the formation of the Watson-Crick base pair and hydration by one water molecule. A natural bond orbital analysis of partial charges shows that approximately 80% of the positive charge persists on guanine upon hydration and formation of the Watson-Crick base pair with cytosine. Hydration energies were computed with second-order Z-averaged perturbation theory (ZAPT2) using the aug-cc-pVDZ basis set at 11 stationary points on the B3LYP/DZP++ potential energy surface. The hydration energy at the global minimum is 14.2 kcal mol(-1). The lowest energy structures correspond to hydration near the glycosidic bond sites. Structural changes in the Watson-Crick base pair are predominantly seen for monohydration in the groove regions of double-helix DNA.


Assuntos
Citosina/química , Dano ao DNA , Guanina/química , Estresse Oxidativo , Ligação de Hidrogênio , Modelos Moleculares , Oxirredução , Eletricidade Estática
10.
J Phys Chem A ; 110(20): 6399-407, 2006 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-16706394

RESUMO

Quadrupolar charge fields of molecules and of molecular fragments give rise to unique features in weakly interacting clusters and aggregations. Relative to dipole-dipole interactions, the interactions among quadrupolar molecules tend to allow for greater orientational distortions away from equilibrium. Potential surface regions have been found for several clusters that are attractive and yet very flat for certain directions. There is a notable slipperiness for the interactions in some of these cases. This implies significant vibrational excursions even in the ground state. Furthermore, the coupling of rotations among nearby molecules in pure clusters of quadrupolar molecules is different than for dipolar species, and it can lead to unexpectedly small internal rotation barriers. How these and other features develop and what they might imply for materials and biomolecular simulations are discussed here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...