Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Liver Int ; 44(8): 2038-2053, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38661318

RESUMO

BACKGROUND AND AIMS: Primary biliary cholangitis (PBC) is a chronic, immune-mediated liver disease that can lead to fibrosis and cirrhosis. In this cohort study, we aimed to investigate morbidity and mortality in conjunction with metabolomic changes of PBC in a UK population-based cohort. METHODS: 454 participants with PBC and 908 propensity score (age, sex, BMI, ethnicity) matched controls without liver disease were included in the study. A subset of participants with PBC and controls were analysed for their metabolomic profile. Further, PBC-associated comorbidities were investigated by PheWAS analysis. Lastly, we assessed causes of death in individuals with PBC using a Fine and Grey competing-risks regression model. RESULTS: Compared to the control group, various pathways associated with the metabolism of amino acids, lipids, and liver biochemistry were significantly enriched in individuals with PBC. We found reduced levels of S-HDL-cholesterol and Glycoprotein Acetyls in individuals with PBC as well as an association with diseases of the circulatory system. Notably, PBC individuals had a higher prevalence of digestive diseases, autoimmune diseases, cardiovascular diseases, anaemias, mental disorders, and urinary tract infections compared to the control group. Strikingly, the overall mortality was almost three times higher in the PBC group compared to the control group, with diseases of the digestive system accounting for a significant elevation of the death rate. A subsequent analysis, enhanced by propensity score matching that included the APRI score, demonstrated that the observed morbidity could not be exclusively attributed to advanced hepatic disease. CONCLUSIONS: Our study provides a detailed perspective on the morbidity of individuals with PBC. The exploration of potential effects of disease state on morbidity suggest that early detection and early treatment of PBC could enhance patient prognosis and prevent the onset of comorbid diseases. Finally, the metabolomic alterations could represent a link between the pathophysiological processes underlying PBC development, progression, and associated morbidity.


Assuntos
Comorbidade , Cirrose Hepática Biliar , Metaboloma , Humanos , Masculino , Feminino , Cirrose Hepática Biliar/mortalidade , Pessoa de Meia-Idade , Reino Unido/epidemiologia , Idoso , Estudos de Casos e Controles , Metabolômica , Adulto , Pontuação de Propensão
2.
JHEP Rep ; 6(3): 100987, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38328439

RESUMO

Background & Aims: Changes in gut microbiota in metabolic dysfunction-associated steatotic liver disease (MASLD) are important drivers of disease progression towards fibrosis. Therefore, reversing microbial alterations could ameliorate MASLD progression. Oat beta-glucan, a non-digestible polysaccharide, has shown promising therapeutic effects on hyperlipidemia associated with MASLD, but its impact on gut microbiota and most importantly MASLD-related fibrosis remains unknown. Methods: We performed detailed metabolic phenotyping, including assessments of body composition, glucose tolerance, and lipid metabolism, as well as comprehensive characterization of the gut-liver axis in a western-style diet (WSD)-induced model of MASLD and assessed the effect of a beta-glucan intervention on early and advanced liver disease. Gut microbiota were modulated using broad-spectrum antibiotic treatment. Results: Oat beta-glucan supplementation did not affect WSD-induced body weight gain or glucose intolerance and the metabolic phenotype remained largely unaffected. Interestingly, oat beta-glucan dampened MASLD-related inflammation, which was associated with significantly reduced monocyte-derived macrophage infiltration and fibroinflammatory gene expression, as well as strongly reduced fibrosis development. Mechanistically, this protective effect was not mediated by changes in bile acid composition or signaling, but was dependent on gut microbiota and was lost upon broad-spectrum antibiotic treatment. Specifically, oat beta-glucan partially reversed unfavorable changes in gut microbiota, resulting in an expansion of protective taxa, including Ruminococcus, and Lactobacillus followed by reduced translocation of Toll-like receptor ligands. Conclusions: Our findings identify oat beta-glucan as a highly efficacious food supplement that dampens inflammation and fibrosis development in diet-induced MASLD. These results, along with its favorable dietary profile, suggest that it may be a cost-effective and well-tolerated approach to preventing MASLD progression and should be assessed in clinical studies. Impact and Implications: Herein, we investigated the effect of oat beta-glucan on the gut-liver axis and fibrosis development in a mouse model of metabolic dysfunction-associated steatotic liver disease (MASLD). Beta-glucan significantly reduced inflammation and fibrosis in the liver, which was associated with favorable shifts in gut microbiota that protected against bacterial translocation and activation of fibroinflammatory pathways. Together, oat beta-glucan may be a cost-effective and well-tolerated approach to prevent MASLD progression and should be assessed in clinical studies.

3.
Nat Commun ; 14(1): 3304, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280200

RESUMO

Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by chronic inflammation and progressive fibrosis of the biliary tree. The majority of PSC patients suffer from concomitant inflammatory bowel disease (IBD), which has been suggested to promote disease development and progression. However, the molecular mechanisms by which intestinal inflammation may aggravate cholestatic liver disease remain incompletely understood. Here, we employ an IBD-PSC mouse model to investigate the impact of colitis on bile acid metabolism and cholestatic liver injury. Unexpectedly, intestinal inflammation and barrier impairment improve acute cholestatic liver injury and result in reduced liver fibrosis in a chronic colitis model. This phenotype is independent of colitis-induced alterations of microbial bile acid metabolism but mediated via hepatocellular NF-κB activation by lipopolysaccharide (LPS), which suppresses bile acid metabolism in-vitro and in-vivo. This study identifies a colitis-triggered protective circuit suppressing cholestatic liver disease and encourages multi-organ treatment strategies for PSC.


Assuntos
Colangite Esclerosante , Colestase , Colite , Doenças Inflamatórias Intestinais , Hepatopatias , Animais , Camundongos , Colangite Esclerosante/complicações , Colangite Esclerosante/terapia , Doenças Inflamatórias Intestinais/complicações , Colestase/complicações , Inflamação/complicações , Colite/complicações , Ácidos e Sais Biliares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...