Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 4005, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275448

RESUMO

Multidrug resistance (MDR) poses a major challenge to medicine. A principle cause of MDR is through active efflux by MDR transporters situated in the bacterial membrane. Here we present the crystal structure of the major facilitator superfamily (MFS) drug/H+ antiporter MdfA from Escherichia coli in an outward open conformation. Comparison with the inward facing (drug binding) state shows that, in addition to the expected change in relative orientations of the N- and C-terminal lobes of the antiporter, the conformation of TM5 is kinked and twisted. In vitro reconstitution experiments demonstrate the importance of selected residues for transport and molecular dynamics simulations are used to gain insights into antiporter switching. With the availability of structures of alternative conformational states, we anticipate that MdfA will serve as a model system for understanding drug efflux in MFS MDR antiporters.


Assuntos
Antiporters/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Substituição de Aminoácidos , Antiporters/genética , Antiporters/metabolismo , Membrana Celular/metabolismo , Cloranfenicol/metabolismo , Cristalografia por Raios X , Resistência a Múltiplos Medicamentos/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Transporte Proteico , Relação Estrutura-Atividade
2.
Methods Mol Biol ; 1700: 97-109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177828

RESUMO

A major hurdle in membrane protein crystallography is generating crystals diffracting sufficiently for structure determination. This is often attributed not only to the difficulty of obtaining functionally active protein in mg amounts but also to the intrinsic flexibility of its multiple conformations. The cocrystallization of membrane proteins with antibody fragments has been reported as an effective approach to improve the diffraction quality of membrane protein crystals by limiting the intrinsic flexibility. Isolating suitable antibody fragments recognizing a single conformation of a native membrane protein is not a straightforward task. However, by a systematic screening approach, the time to obtain suitable antibody fragments and consequently the chance of obtaining diffracting crystals can be reduced. In this chapter, we describe a protocol for the generation of Fab fragments recognizing the native conformation of a major facilitator superfamily (MFS)-type MDR transporter MdfA from Escherichia coli. We confirmed that the use of Fab fragments was efficient for stabilization of MdfA and improvement of its crystallization properties.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Proteínas de Membrana Transportadoras/química , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/química , Proteínas de Escherichia coli/imunologia , Fragmentos Fab das Imunoglobulinas/química , Proteínas de Membrana Transportadoras/imunologia , Conformação Molecular , Estabilidade Proteica , Especificidade por Substrato
3.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 7): 423-430, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28695852

RESUMO

The active efflux of antibiotics by multidrug-resistance (MDR) transporters is a major pathway of drug resistance and complicates the clinical treatment of bacterial infections. MdfA is a member of the major facilitator superfamily (MFS) from Escherichia coli and provides resistance to a wide variety of dissimilar toxic compounds, including neutral, cationic and zwitterionic substances. The 12-transmembrane-helix MdfA was expressed as a GFP-octahistidine fusion protein with a TEV protease cleavage site. Following tag removal, MdfA was purified using two chromatographic steps, complexed with a Fab fragment and further purified using size-exclusion chromatography. MdfA and MdfA-Fab complexes were subjected to both vapour-diffusion and lipidic cubic phase (LCP) crystallization techniques. Vapour-diffusion-grown crystals were of type II, with poor diffraction behaviour and weak crystal contacts. LCP lipid screening resulted in type I crystals that diffracted to 3.4 Šresolution and belonged to the hexagonal space group P6122.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas Recombinantes de Fusão/química , Motivos de Aminoácidos , Sítios de Ligação , Cromatografia em Gel , Clonagem Molecular , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla , Endopeptidases/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fab das Imunoglobulinas/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
4.
Biochemistry ; 54(42): 6454-61, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26435421

RESUMO

Human vitamin K epoxide reductase (hVKOR) is an integral membrane protein responsible for the maintenance of reduced vitamin K pools, a prerequisite for the action of γ-glutamyl carboxylase and hence for hemostasis. Here we describe the recombinant expression of hVKOR as an insoluble fusion protein in Escherichia coli, followed by purification and chemical cleavage under denaturing conditions. In vitro renaturation and reconstitution of purified solubilized hVKOR in phospholipids could be established to yield active protein. Crucially, the renatured enzyme is inhibited by the powerful coumarin anticoagulant warfarin, and we demonstrate that enzyme activity depends on lipid composition. The completely synthetic system for protein production allows a rational investigation of the multiple variables in membrane protein folding and paves the way for the provision of pure, active membrane protein for structural studies.


Assuntos
Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Técnicas In Vitro , Cinética , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vitamina K Epóxido Redutases/genética , Varfarina/farmacologia
5.
Proteins ; 81(5): 830-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23255122

RESUMO

Neisseria meningitidis is the main causative agent of bacterial meningitis. In its outer membrane, the trimeric Neisserial porin PorB is responsible for the diffusive transport of essential hydrophilic solutes across the bilayer. Previous molecular dynamics simulations based on the recent crystal structure of PorB have suggested the presence of distinct solute translocation pathways through this channel. Although PorB has been electrophysiologically characterized as anion-selective, cation translocation through nucleotide-bound PorB during pathogenesis is thought to be instrumental for host cell death. As a result, we were particularly interested in further characterizing cation transport through the pore. We combined a structural approach with additional computational analysis. Here, we present two crystal structures of PorB at 2.1 and 2.65 Å resolution. The new structures display additional electron densities around the protruding loop 3 (L3) inside the pore. We show that these electron densities can be identified as monovalent cations, in our case Cs(+), which are tightly bound to the inner channel. Molecular dynamics simulations reveal further ion interactions and the free energy landscape for ions inside PorB. Our results suggest that the crystallographically identified locations of Cs(+) form a cation transport pathway inside the pore. This finding suggests how positively charged ions are translocated through PorB when the channel is inserted into mitochondrial membranes during Neisserial infection, a process which is considered to dissipate the mitochondrial transmembrane potential gradient and thereby induce apoptosis.


Assuntos
Césio/metabolismo , Neisseria meningitidis/química , Porinas/química , Sítios de Ligação , Cátions/metabolismo , Cristalografia por Raios X , Humanos , Transporte de Íons , Meningite Meningocócica/microbiologia , Simulação de Dinâmica Molecular , Neisseria meningitidis/metabolismo , Porinas/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...