Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 36: 168-184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38463551

RESUMO

Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600-1300 µm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and in vivo assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures.

2.
Small Methods ; : e2301349, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193272

RESUMO

Oxygen (O2 ), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2 S), and hydrogen (H2 ) with direct effects, and carbon dioxide (CO2 ) with complementary effects on the condition of various diseases are known as therapeutic gases. The targeted delivery and in situ generation of these therapeutic gases with controllable release at the site of disease has attracted attention to avoid the risk of gas poisoning and improve their performance in treating various diseases such as cancer therapy, cardiovascular therapy, bone tissue engineering, and wound healing. Stimuli-responsive gas-generating sources and delivery systems based on biomaterials that enable on-demand and controllable release are promising approaches for precise gas therapy. This work highlights current advances in the design and development of new approaches and systems to generate and deliver therapeutic gases at the site of disease with on-demand release behavior. The performance of the delivered gases in various biomedical applications is then discussed.

3.
Colloids Surf B Biointerfaces ; 231: 113562, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774524

RESUMO

The inadequate oxygen supply to engineered tissues has been a persistent challenge in tissue engineering and regenerative medicine. To overcome this limitation, we developed a scaffold combined with an oxygen-releasing liposomal system comprising catalase-loaded liposomes (CAT@Lip) and H2O2-loaded liposomes (H2O2@Lip). This oxygenation system has shown high cytocompatibility when they were applied to human stromal cells. Under hypoxic conditions, the cell viability enclosed in the oxygen-releasing liposomal alginate hydrogel (94.62 ± 3.46 %) was significantly higher than that of cells enclosed in hydrogel without liposomes (47.18 ± 9.68 %). There was no significant difference in cell viability and apoptosis rate compared to normoxia conditions after three days, indicating the effectiveness of the oxygen-releasing approach in hypoxic conditions. In conclusion, our study demonstrates that the use of liposomal oxygen-releasing scaffolds can overcome the oxygen diffusion challenge in tissue implant fabrication, providing a simple solution for cellular oxygenation that could be a crucial element in tissue engineering.


Assuntos
Hidrogéis , Oxigênio , Humanos , Hidrogéis/farmacologia , Sobrevivência Celular , Peróxido de Hidrogênio , Lipossomos , Hipóxia , Engenharia Tecidual , Alicerces Teciduais
4.
Int J Biol Macromol ; 232: 123348, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36682658

RESUMO

Targeted delivery of bioactive agents, growth factors, and drugs to skin wounds is a growing trend in biomaterials development for wound healing. This study presents a printable hyaluronic acid (HA) based hydrogel to deliver yeast-derived ACE-inhibitory peptide of VLSTSFPPW (VW-9) to the wound site. We first conjugated tyramine (Ty) on the carboxyl groups of the HA to form a phenol-functionalized HA (HA-Ty); then, the carboxylic acid groups of HA-Ty were aminated with ethylenediamine (HA-Ty-NH2). The primary amine groups of the HA-Ty-NH2 could then react with the carboxylic acids of the peptide. The hydrogel was then 3D printed and crosslinked with visible light. The modification of HA was confirmed by 1H NMR and FTIR. The swelling capacity of the conjugated hydrogels was 1.5-fold higher compared to the HA-Ty-NH2 hydrogel. The conjugated peptide did not affect on rheological properties and morphology of the hydrogels. The 3T3-L1 fibroblast cells seeded on the peptide-modified hydrogels exhibited higher viability than the hydrogels without the peptide, indicating that the peptide-enriched hydrogels may have the potential for wound healing applications.


Assuntos
Ácido Hialurônico , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/química , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Saccharomyces cerevisiae , Cicatrização , Peptídeos/farmacologia
5.
Crit Rev Food Sci Nutr ; 63(28): 9436-9481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35546340

RESUMO

Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources. This article appraises the most recent studies conducted in the last five years on animal-derived proteins' separation and biomedical application. The effort encompasses an introduction about the composition, an overview of the extraction and purification methods, and the broad range of biomedical applications of these ensuing proteins.


Assuntos
Proteínas , Reciclagem , Animais
6.
J Adv Res ; 46: 61-74, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35760297

RESUMO

INTRODUCTION: Exopolysaccharides (EPSs) are high-value functional biomaterials mainly produced by bacteria and fungi, with nutraceutical, therapeutic and industrial potentials. OBJECTIVES: This study sought to characterize and assess the biological properties of the EPS produced by the yeast Papiliotrema terrestris PT22AV. METHODS: After extracting the yeast's DNA and its molecular identification, the EPS from P. terrestris PT22AV strain was extracted and its physicochemical properties (structural, morphological, monosaccharide composition and molecular weight) were characterized. The EPS's in vitro biological activities and in vivo wound healing potential were also evaluated. RESULTS: The obtained EPS was water-soluble and revealed an average molecular weight (Mw) of 202 kDa. Mannose and glucose with 97% and 3% molar percentages, respectively, constituted the EPS. In vitro antibacterial activity analysis of the extracted EPS exhibited antibacterial activity (>80%) against Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis at a concentration of 2 mg/mL. The EPS showed cytocompatibility against the human fibroblast and macrophage cell lines and the animal studies showed a dose-dependent wound healing capacity of the EPS with higher wound closure at 10 mg/mL compared to negative and positive control after 14 days. CONCLUSION: The EPS from P. terrestris PT22AV could serve as a promising source of biocompatible macromolecules with potential for skin wound healing.


Assuntos
Basidiomycota , Saccharomyces cerevisiae , Humanos , Animais , Cicatrização , Antibacterianos
7.
J Biomater Sci Polym Ed ; 34(1): 72-88, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35924835

RESUMO

Kiwi extract (KE) including different components such as quercetin, vitamins C and E, and actinides has been known as a debridement agent for burn wounds. In this study, electrospun poly(ɛ-caprolactone)/cellulose acetate blend nanofibers incorporating KE (PCL/CA/KE) were prepared and their performance was evaluated for healing acceleration of burn wounds. The physicochemical characterization of PCL/CA/KE nanofibers showed an average diameter of ∼420 nm, porosity of 70%, water contact angle of 61°, and water uptake of ∼220%. Moreover, the continuous release trend of KE from PCL/CA blend nanofibers happened during 24 h and the release mechanism was governed by the Fickian diffusion. Besides the cytocompatibility of PCL/CA/KE nanofibers, their in vivo experiments revealed that the bioactive wound dressing based on the sample has higher wound closure compared to KE after 21 days. Histopathology of wounds dressed by PCL/CA/KE nanofibers indicated epidermal formation along with a fully extended layer. Eventually, the obtained results confirmed that the PCL/CA/KE nanofibrous sample was a promising wound dressing for burn wound healing.


Assuntos
Queimaduras , Nanofibras , Humanos , Nanofibras/química , Cicatrização , Queimaduras/terapia , Poliésteres/química , Água/química
8.
Carbohydr Polym ; 295: 119844, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988997

RESUMO

Enzyme-mediated crosslinked hydrogels as soft materials for biomedical applications have gained considerable attention. In this article, we studied the effect of tannic acid post-treatment on adhesiveness and physiochemical properties of an enzymatically crosslinked hydrogel based on chitosan and alginate. The hydrogels were soaked in TA solution at different pH (3, 5.5, 7.4, and 9) and concentrations (1, 10, 20, 30 TA wt%). Increasing the TA concentration to 30 TA wt% and pH (up to 7.4) increased the TA loading and TA release. TA post-treatment reduced the swelling ratio and degradation rate of the hydrogels due to the formation of hydrogen bonding between TA molecules, chitosan, and alginate chains resulted in higher crosslinking density. TA-reinforced hydrogels with 30 % TA (Gel-TA 30) exhibited significantly high adhesive strength (up to 18 kPa), storage modulus (40 kPa), and antioxidant activity (>96 %), antibacterial activity, and proliferation and viability of 3 T3-L1 fibroblast cells.


Assuntos
Quitosana , Hidrogéis , Alginatos/química , Antioxidantes/química , Quitosana/química , Hidrogéis/química , Hidrogéis/farmacologia , Taninos/química
9.
J Mater Chem B ; 10(31): 5873-5912, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880440

RESUMO

Tannic acid (TA), a natural polyphenol, is a hydrolysable amphiphilic tannin derivative of gallic acid with several galloyl groups in its structure. Tannic acid interacts with various organic, inorganic, hydrophilic, and hydrophobic materials such as proteins and polysaccharides via hydrogen bonding, electrostatic, coordinative bonding, and hydrophobic interactions. Tannic acid has been studied for various biomedical applications as a natural crosslinker with anti-inflammatory, antibacterial, and anticancer activities. In this review, we focus on TA-based hydrogels for biomaterials engineering to help biomaterials scientists and engineers better realize TA's potential in the design and fabrication of novel hydrogel biomaterials. The interactions of TA with various natural or synthetic compounds are deliberated, discussing parameters that affect TA-material interactions thus providing a fundamental set of criteria for utilizing TA in hydrogels for tissue healing and regeneration. The review also discusses the merits and demerits of using TA in developing hydrogels either through direct incorporation in the hydrogel formulation or indirectly via immersing the final product in a TA solution. In general, TA is a natural bioactive molecule with diverse potential for engineering biomedical hydrogels.


Assuntos
Hidrogéis , Taninos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Hidrogéis/química , Polifenóis/farmacologia , Taninos/química , Cicatrização
10.
Int J Biol Macromol ; 212: 370-380, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35613678

RESUMO

Alginates are widely used polysaccharides for biomaterials engineering, which functional properties depend on guluronic and mannuronic acid as the building blocks. In this study, enzymatically crosslinked hydrogels based on sodium alginate (Na-Alg) and the exopolysaccharide (EPS) derived from Cryptococcus laurentii 70766 with glucuronic acid residues were synthesized and characterized as a new potential source of polysaccharide for biomaterials engineering. The EPS was extracted (1.05 ± 0.57 g/L) through ethanol precipitation. Then the EPS and Na-Alg were functionalized with tyramine hydrochloride to produce enzymatically crosslinked hydrogels in the presence of horseradish peroxidase (HRP) and H2O2. Major characteristics of the hydrogels such as gelling time, swelling ratio, rheology, cell viability, and biodegradability were studied. The swelling ratio and degradation profile of both hydrogels showed negative values, indicating an increased crosslinking degree and a lower water uptake percentage. The EPS hydrogel showed similar gelation kinetics compared to the Alg hydrogel. The EPS and its hydrogel were found cytocompatible. The results indicate the potential of EPS from C. laurentii 70766 for biomedical engineering due to its biocompatibility and degradability. Further studies are needed to confirm this EPS as an alternative for Alg in tissue engineering applications, particularly in the development of wound dressing products.


Assuntos
Alginatos , Hidrogéis , Alginatos/química , Basidiomycota , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Hidrogéis/química , Peróxido de Hidrogênio/química , Íons , Engenharia Tecidual/métodos
11.
Gels ; 7(3)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34563024

RESUMO

An artificial ovary is a promising approach for preserving fertility in prepubertal girls and women who cannot undergo current cryopreservation strategies. However, this approach is in its infancy, due to the possible challenges of creating a suitable 3D matrix for encapsulating ovarian follicles and stromal cells. To maintain the ovarian stromal cell viability and proliferation, as a first step towards developing an artificial ovary, in this study, a double network hydrogel with a high water swelling capacity (swelling index 15-19) was developed, based on phenol conjugated chitosan (Cs-Ph) and silk fibroin (SF) through an enzymatic crosslinking method using horseradish peroxidase. The addition of SF (1%) to Cs (1%) decreased the storage modulus (G') from 3500 Pa (Cs1) to 1600 Pa (Cs-SF1), and the hydrogels with a rapid gelation kinetic produced a spatially homogeneous distribution of ovarian cells that demonstrated 167% proliferation after 7 days. This new Cs-SF hydrogel benefits from the toughness and flexibility of SF, and phenolic chemistry could provide the potential microstructure for encapsulating human ovarian stromal cells.

12.
Int J Biol Macromol ; 182: 168-178, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33838184

RESUMO

Electrospun poly (l-lactide-co-d, l-lactide) (PLDLLA)/poly (vinyl alcohol) (PVA) nanofibers were reinforced by various contents (0-1 wt%) of phospho-calcified cellulose nanowhiskers (PCCNWs) as scaffolds in bone applications. The hydrophilicity and rate of hydrolytic degradation of PLDLLA were improved by introducing 10 wt% of PVA. PCCNWs with inherent hydrophilic properties, high aspect ratio, and large elastic modulus enhanced the hydrophilicity, accelerated the rate of degradation, and improved the mechanical properties of the nanofibrous samples. Moreover, calcium phosphate and phosphate functional groups on the surface of PCCNWs possessing act as stimulating agents for cellular activities such as proliferation and differentiation. Besides the physico-chemical properties investigation of PLDLLA/PVA-PCCNWs nanofibrous samples, their cytotoxicity was also studied and they did not show any adverse side effect. Incorporation of PCCNWs (1 wt%) into the PLDLLA/PVA nanofibrous samples showed more enzymatic activities and deposited calcium. The micrograph images of the morphology of human mesenchymal stem cells (hMSCs) cultured on the nanofibrous sample containing 1 wt% of PCCNWs after 14 days of cell differentiation revealed their high potential for bone tissue engineering.


Assuntos
Celulose/análogos & derivados , Nanofibras/química , Osteogênese , Poliésteres/química , Álcool de Polivinil/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cálcio/química , Linhagem Celular , Módulo de Elasticidade , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Fósforo/química
13.
Polymers (Basel) ; 12(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998331

RESUMO

The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the human body. This article presents an overview of the recent studies from 2014 to 2020 conducted on collagen extraction from marine-based materials, in particular fish by-products. The fish collagen structure, extraction methods, characterization, and biomedical applications are presented. More specifically, acetic acid and deep eutectic solvent (DES) extraction methods for marine collagen isolation are described and compared. In addition, the effect of the extraction parameters (temperature, acid concentration, extraction time, solid-to-liquid ratio) on the yield of collagen is investigated. Moreover, biomaterials engineering and therapeutic applications of marine collagen have been summarized.

14.
Mater Sci Eng C Mater Biol Appl ; 117: 111266, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919632

RESUMO

Chitooligosaccharides (CHOS) are oligomers of ß-(1-4) linked N-acetylglucosamine and D-glucosamine that are produced from chitin or chitosan using different enzymatic or chemical methods. CHOS are water-soluble and non-cytotoxic with diverse bioactivities such as antibacterial, anti-inflammation, anti-obesity, anti-tumor and antioxidant. These biological features make CHOS promising compounds for several medical and food applications. In this review, we critically summarize the biological activities of CHOS in biomaterials engineering with a particular focus on CHOS applications for skin tissue healing and regeneration. We also present an updated overview of CHOS fabrications into wound dressing biomaterials for several in vitro and in vivo studies.


Assuntos
Materiais Biocompatíveis , Quitosana , Materiais Biocompatíveis/farmacologia , Quitina/análogos & derivados , Oligossacarídeos , Cicatrização
15.
ACS Biomater Sci Eng ; 4(7): 2484-2493, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435112

RESUMO

In this work, phospho-calcified cellulose nanowhiskers (PCCNWs) were prepared from wastepaper powder (WPP) and were dispersed in poly(ε-caprolactone) (PCL). The biocompatible and biodegradable (PCL)/PCCNW bimodal foam nanocomposites with two species cell sizes were prepared by the solvent casting/particulate leaching method in different weight percentage of PCCNWs. The mechanical, thermal, and in vitro biological properties of PCL/PCCNW nanocomposites were investigated. All PCL/PCCNW scaffolds were hydrophilic, biodegradable, and also noncytotoxic. The human mesenchymal stem cells were cultured on the prepared PCL/PCCNW bimodal foam nanocomposites and differentiated to osteoblasts. On the basis of evaluating tests such as MTT assay, acridine orange/ethidium bromide staining, alkaline phosphatase assay, calcium content assay, and alizarin red staining, PCL/PCCNW scaffolds were introduced as an appropriate option for emulating the behavior of extracellular matrix. Increasing PCCNWs improves the mechanical, hydrophilic, and biodegradability properties of the nanocomposites as well as their osteoconductivity.

16.
Carbohydr Polym ; 175: 293-302, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917869

RESUMO

The aim of this study was to prepare cellulose nanowhiskers (CNWs) from wastepaper powder (WPP), as an environmentally friendly approach for obtaining the source material, which is a highly available and low-cost precursor for cellulose nanomaterial processing. Acid hydrolysis and calcification treatments were employed for extraction of CNWs and preparation of novel phospho-calcified cellulose nanowhiskers (PCCNWs). CNWs and PCCNWs were analyzed through optical microscopy (OM), scanning electron microscopy (SEM), Fourier-transformed infrared spectra (FTIR) and X-ray diffraction analysis (XRD). Cell behaviors in the presence of CNWs and PCCNWs were studied by MTT assay and live-dead staining. Finally, the effect of these particles on osteogenic differentiation of stem cells was evaluated based on alkaline phosphatase activity (ALP), calcium mineralization as well as von Kossa and alizarin red staining. Based on the results, PCCNWs had a positive effect on osteogenic differentiation of human mesenchymal stem cells (hMSCs) and can be used for developing new approaches for bone tissue engineering.


Assuntos
Diferenciação Celular , Celulose/química , Células-Tronco Mesenquimais/citologia , Osteogênese , Papel , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...