Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(10): 6203-14, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25609251

RESUMO

Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3'-DNA adducts, such as the 3'-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (His(nuc)) that attacks DNA adducts to form a covalent 3'-phosphohistidyl intermediate and a general acid/base His (His(gab)), which resolves the Tdp1-DNA linkage. A His(nuc) to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of His(gab) to Arg. However, here we report that expression of the yeast His(nuc)Ala (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 His(gab) mutants, including H432N and the SCAN1-related H432R. Moreover, the His(nuc)Ala mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the His(nuc)Phe mutant was catalytically inactive and suppressed His(gab) mutant-induced toxicity. These data suggest that the activity of another nucleophile when His(nuc) is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to His(nuc), can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate.


Assuntos
Adutos de DNA/química , DNA/genética , Proteínas Mutantes/química , Diester Fosfórico Hidrolases/genética , Catálise , Domínio Catalítico/genética , Cristalografia por Raios X , DNA/química , Adutos de DNA/genética , Dano ao DNA/genética , Reparo do DNA/genética , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteínas Mutantes/genética , Diester Fosfórico Hidrolases/química , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
2.
J Mol Biol ; 415(4): 741-58, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22155078

RESUMO

Tyrosyl-DNA phosphodiesterase I (Tdp1) is a member of the phospholipase D superfamily that hydrolyzes 3'-phospho-DNA adducts via two conserved catalytic histidines-one acting as the lead nucleophile and the second acting as a general acid/base. Substitution of the second histidine specifically to arginine contributes to the neurodegenerative disease spinocerebellar ataxia with axonal neuropathy (SCAN1). We investigated the catalytic role of this histidine in the yeast protein (His432) using a combination of X-ray crystallography, biochemistry, yeast genetics, and theoretical chemistry. The structures of wild-type Tdp1 and His432Arg both show a phosphorylated form of the nucleophilic histidine that is not observed in the structure of His432Asn. The phosphohistidine is stabilized in the His432Arg structure by the guanidinium group that also restricts the access of nucleophilic water molecule to the Tdp1-DNA intermediate. Biochemical analyses confirm that His432Arg forms an observable and unique Tdp1-DNA adduct during catalysis. Substitution of His432 by Lys does not affect catalytic activity or yeast phenotype, but substitutions with Asn, Gln, Leu, Ala, Ser, and Thr all result in severely compromised enzymes and DNA topoisomerase I-camptothecin dependent lethality. Surprisingly, His432Asn did not show a stable covalent Tdp1-DNA intermediate that suggests another catalytic defect. Theoretical calculations revealed that the defect resides in the nucleophilic histidine and that the pK(a) of this histidine is crucially dependent on the second histidine and on the incoming phosphate of the substrate. This represents a unique example of substrate-activated catalysis that applies to the entire phospholipase D superfamily.


Assuntos
Fosfolipase D/química , Diester Fosfórico Hidrolases/química , Domínio Catalítico/genética , Cristalografia por Raios X , Histidina/química , Histidina/genética , Histidina/metabolismo , Humanos , Cinética , Modelos Biológicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Família Multigênica/genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Organismos Geneticamente Modificados , Fosfolipase D/análise , Fosfolipase D/genética , Diester Fosfórico Hidrolases/análise , Diester Fosfórico Hidrolases/genética , Leveduras/genética , Leveduras/metabolismo
3.
Hypertension ; 45(6): 1182-7, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15897359

RESUMO

Angiotensin II and the arachidonic acid metabolite derived via cytochrome P450 20-hydroxyeicostetraenoic acid promote vasoconstriction and vascular smooth muscle cell (VSMC) proliferation. This study was conducted to determine if 20-hydroxyeicostetraenoic acid contributes to angiotensin II-induced neointimal formation in balloon-injured rat carotid artery. In anesthetized rats, the drugs were infused into the clamped segment of the injured right common carotid artery for 60 minutes. The drug solution and catheter were withdrawn, the common carotid artery was ligated, and blood flow was restored. Exposure of the injured artery to angiotensin II (200 nmol/L) or arachidonic acid (10 micromol/L) increased neointimal thickening at day 14 (intima/media ratio 0.71+/-0.14 with vehicle versus 1.65+/-0.10 with angiotensin II or 1.31+/-0.13 with arachidonic acid; P<0.05). Cytochrome P450 4A1 antisense, but not scrambled, oligodeoxynucleotide (100 nmol/L) reduced angiotensin II-induced or arachidonic acid-induced neointimal thickening (intima/media ratio 0.90+/-0.07 for angiotensin II and 0.95+/-0.06 for arachidonic acid). 20-hydroxyeicostetraenoic acid (0.5 micromol/L) also increased neointimal thickening of injured artery (intima/media ratio 1.15+/-0.03); this was not altered by cytochrome P450 4A1 antisense oligodeoxynucleotide. Angiotensin II, arachidonic acid, and 20-hydroxyeicostetraenoic acid also induced the expression of cytochrome P450 4A and increased the number of CD45-positive cells; the latter effect of angiotensin II and arachidonic acid, but not 20-hydroxyeicostetraenoic acid, was diminished by cytochrome P450 4A1 antisense oligodeoxynucleotide. These data suggest that arachidonic acid metabolites derived via cytochrome P450 4A, most likely 20-hydroxyeicostetraenoic acid, mediate angiotensin II-induced neointimal thickening in injured rat carotid artery.


Assuntos
Angiotensina II/farmacologia , Ácido Araquidônico/metabolismo , Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/fisiopatologia , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Túnica Íntima/crescimento & desenvolvimento , Animais , Ácido Araquidônico/farmacologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/crescimento & desenvolvimento , Lesões das Artérias Carótidas/etiologia , Cateterismo , Células Cultivadas , Sistema Enzimático do Citocromo P-450/genética , Família 4 do Citocromo P450 , Antígenos Comuns de Leucócito/metabolismo , Masculino , Oligonucleotídeos Antissenso/farmacologia , Ratos , Ratos Sprague-Dawley , Túnica Íntima/efeitos dos fármacos
4.
J Pharmacol Exp Ther ; 313(3): 1017-26, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15705737

RESUMO

Cytosolic phospholipase A(2) (cPLA(2)) is activated and translocated to the nuclear envelope by various vasoactive agents, including norepinephrine (NE), and releases arachidonic acid (AA) from tissue phospholipids. We previously demonstrated that NE-induced cPLA(2) translocation to the nuclear envelope is mediated via its phosphorylation by calcium/calmodulin-dependent kinase-II in rabbit vascular smooth muscle cells (VSMCs). Cytoskeletal structures actin and microtubule filaments have been implicated in the trafficking of proteins to various cellular sites. This study was conducted to investigate the contribution of actin and microtubule filaments to cPLA(2) translocation to the nuclear envelope and its activation by NE in rabbit VSMCs. NE (10 microM) caused cPLA(2) translocation to the nuclear envelope as determined by immunofluorescence. Cytochalasin D (CD; 0.5 microM) and latrunculin A (LA; 0.5 microM) that disrupted actin filaments, blocked cPLA(2) translocation elicited by NE. On the other hand, disruption of microtubule filaments by 10 microM colchicine did not block NE-induced cPLA(2) translocation to the nuclear envelope. CD and LA did not inhibit NE-induced increase in cytosolic calcium and cPLA(2) activity, determined from the hydrolysis of l-1-[(14)C]arachidonyl phosphatidylcholine and release of AA. Coimmunoprecipitation studies showed an association of actin with cPLA(2), which was not altered by CD or LA. Far-Western analysis showed that cPLA(2) interacts directly with actin. Our data suggest that NE-induced cPLA(2) translocation to the nuclear envelope requires an intact actin but not microtubule filaments and that cPLA(2) phosphorylation and activation and AA release are independent of its translocation to the nuclear envelope in rabbit VSMCs.


Assuntos
Actinas/fisiologia , Citosol/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Norepinefrina/farmacologia , Fosfolipases A/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Cães , Ativação Enzimática/efeitos dos fármacos , Músculo Liso Vascular/citologia , Membrana Nuclear/enzimologia , Fosfolipases A2 , Fosforilação , Transporte Proteico , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...