Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 363: 121418, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852408

RESUMO

Salinization is a leading threat to soil degradation and sustainable crop production. The application of organic amendments could improve crop growth in saline soil. Thus, we assessed the impact of sugarcane bagasse (SB) and its biochar (SBB) on soil enzymatic activity and growth response of maize crop at three various percentages (0.5%, 1%, and 2% of soil) under three salinity levels (1.66, 4, and 8 dS m-1). Each treatment was replicated three times in a completely randomized block design with factorial settings. The results showed that SB and SBB can restore the impact of salinization, but the SBB at the 2% addition rate revealed promising results compared to SB. The 2% SBB significantly enhanced shoot length (23.4%, 26.1%, and 41.8%), root length (16.8%, 20.8%, and 39.0%), grain yield (17.6%, 25.1%, and 392.2%), relative water contents (11.2%, 13.1%, and 19.2%), protein (17.2%, 19.6%, and 34.9%), and carotenoid (16.3, 30.3, and 49.9%) under different salinity levels (1.66, 4, and 8 dS m-1, respectively). The 2% SBB substantially drop the Na+ in maize root (28.3%, 29.9%, and 22.4%) and shoot (36.1%, 37.2%, and 38.5%) at 1.66, 4, and 8 dS m-1. Moreover, 2% SBB is the best treatment to boost the urease by 110.1%, 71.7%, and 91.2%, alkaline phosphatase by 28.8%, 38.8%, and 57.6%, and acid phosphatase by 48.4%, 80.1%, and 68.2% than control treatment under 1.66, 4 and 8 dS m-1, respectively. Pearson analysis showed that all the growth and yield parameters were positively associated with the soil enzymatic activities and negatively correlated with electrolyte leakage and sodium. The structural equational model (SEM) showed that the different application percentage of amendments significantly influences the growth and physiological parameters at all salinity levels. SEM explained the 81%, 92%, and 95% changes in maize yield under 1.66, 4, and 8 dS m-1, respectively. So, it is concluded that the 2% SBB could be an efficient approach to enhance the maize yield by ameliorating the noxious effect of degraded saline soil.


Assuntos
Carvão Vegetal , Saccharum , Solo , Zea mays , Zea mays/crescimento & desenvolvimento , Solo/química , Saccharum/crescimento & desenvolvimento , Carvão Vegetal/química , Celulose , Salinidade
2.
Int J Phytoremediation ; 26(6): 936-946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630443

RESUMO

Vegetable cultivation under sewage irrigation is a common practice mostly in developing countries due to a lack of freshwater. Long-term usage provokes heavy metals accumulation in soil and ultimately hinders the growth and physiology of crop plants and deteriorates the quality of food. A study was performed to investigate the role of brassinosteroid (BRs) and silicon (Si) on lettuce, spinach, and cabbage under lead (Pb) and cadmium (Cd) contaminated sewage water. The experiment comprises three treatments (control, BRs, and Si) applied under a completely randomized design (CRD) in a growth chamber. BRs and Si application resulted in the highest increase of growth, physiology, and antioxidant enzyme activities when applied under canal water followed by distilled water and sewage water. However, BRs and Si increased the above-determined attributes under the sewage water by reducing the Pb and Cd uptake as compared to the control. It's concluded that sewerage water adversely affected the growth and development of vegetables by increasing Pb and Cd, and foliar spray of Si and BRs could have great potential to mitigate the adverse effects of heavy metals and improve the growth. The long-term alleviating effect of BRs and Si will be evaluated in the field conditions at different ecological zones.


Assuntos
Verduras , Águas Residuárias , Brassinosteroides , Esgotos , Cádmio , Antioxidantes , Silício , Chumbo , Biodegradação Ambiental , Água
3.
Environ Sci Pollut Res Int ; 30(57): 120461-120471, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940829

RESUMO

Lead, a toxic heavy metal present in soil, hampers biological activities and affects the metabolism of plants, animals, and human beings. Its higher concentration may disturb the various physio-chemical processes, which result in stunted and poor plant growth. An interactive approach of plant growth promoting rhizobacteria (PGPR) and L-tryptophan can be used to mitigate the lethal effects of lead. A pot experiment was conducted, and two weeks before sowing, the level of lead (300 mg kg-1) was maintained by spiking the PbCl2 salt. Pseudomonas fluorescens and L-tryptophan were applied individually as well as in combination to segregate the effect of both in contaminated soil under a completely Randomized Design (CRD). Statistical analysis revealed that plant growth was significantly reduced up to 22% due to lead contamination. However, the interactive approach of PGPR and L-tryptophan significantly improved the plant growth, physiology, and yield with relative productive index (RPI) under a lead-stressed environment. Moreover, integrated use of PGPR and L-tryptophan demonstrated a considerable increase (22%) in lead removal efficiency (LRE) by improving bioconcentration factor (BCF) and translocation factor (TF) for shoot without increasing the lead concentration in achenes. The reduced lead concentration in achene was due to its immobilization in shoot and root by negatively charged particles and improved the lead sequestration in vegetative parts which abridged the translocation of lead into achenes.


Assuntos
Alphaproteobacteria , Helianthus , Pseudomonas fluorescens , Poluentes do Solo , Animais , Humanos , Chumbo/análise , Pseudomonas fluorescens/metabolismo , Triptofano , Biodegradação Ambiental , Alphaproteobacteria/metabolismo , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...