Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896377

RESUMO

Polymer matrix wave transparent composites are used in a variety of high-speed communication applications. One of the applications of these involves making protective enclosures for antennas of microwave towers, air vehicles, weather radars, and underwater communication devices. Material performance, structural, thermal, and mechanical degradation are matters of concern as advanced wireless communication needs robust materials for radomes that can withstand mechanical and thermal stresses. These polymer composite radomes are installed externally on antennas and are exposed directly to ambient as well as severe conditions. In this research, epoxy resin was reinforced with a small amount of quartz fibers to yield an improved composite radome material compared to a pure epoxy composite with better thermal and mechanical properties. FTIR spectra, SEM morphology, dielectric constant (Ɛr) and dielectric loss (δ), thermal degradation (weight loss), and mechanical properties were determined. Compared to pure epoxy, the lowest values of Ɛr and δ were 3.26 and 0.021 with 30 wt.% quartz fibers in the composite, while 40% less weight loss was observed which shows its better thermal stability. The mechanical characteristics encompassing tensile and bending strength were improved by 42.8% and 48.3%. In high-speed communication applications, compared to a pure epoxy composite, adding only a small quantity of quartz fiber can improve the composite material's dielectric performance, durability, and thermal and mechanical strength.

2.
Materials (Basel) ; 15(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36499794

RESUMO

This research investigates the machinability of Inconel 718 under conventional machining speeds using three different tool coatings in comparison with uncoated tool during milling operation. Cutting speed, feed rate and depth of cut were selected as variable machining parameters to analyze output responses including surface roughness, burr formation and tool wear. It was found that uncoated and AlTiN coated tools resulted in lower tool wear than nACo and TiSiN coated tools. On the other hand, TiSiN coated tools resulted in highest surface roughness and burr formation. Among the three machining parameters, feed was identified as the most influential parameter affecting burr formation. Grey relational analysis identified the most optimal experimental run with a speed of 14 m/min, feed of 1 µm/tooth, and depth of cut of 70 µm using an AlTiN coated tool. ANOVA of the regression model identified the tool coating parameter as most effective, with a contribution ratio of 41.64%, whereas cutting speed and depth of cut were found to have contribution ratios of 18.82% and 8.10%, respectively. Experimental run at response surface optimized conditions resulted in reduced surface roughness and tool wear by 18% and 20%, respectively.

3.
Materials (Basel) ; 15(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431550

RESUMO

Due to the increasing demand for higher production rates in the manufacturing sector, there is a need to manufacture finished or near-finished parts. Burrs and surface roughness are the two most important indicators of the surface quality of any machined parts. In addition to this, there is a constant need to reduce energy consumption during the machining operation in order to reduce the carbon footprint. Milling is one of the most extensively used cutting processes in the manufacturing industry. This research was conducted to investigate the effect of machining parameters on surface roughness, burr width, and specific energy consumption. In the present research, the machining parameters were varied using the Taguchi L9 array design of experiments, and their influence on the response parameters, including specific cutting energy, surface finish, and burr width, was ascertained. The response trends of burr width, energy consumption, and surface roughness with respect to the input parameters were analyzed using the main effect plots. Analysis of variance indicated that the cutting speed has contribution ratios of 55% and 47.98% of the specific cutting energy and burr width on the down-milling side, respectively. On the other hand, the number of inserts was found to be the influential member, with contribution ratios of 68.74% and 35% of the surface roughness and burr width on the up-milling side. The validation of the current design of the experiments was carried out using confirmatory tests in the best and worst conditions of the output parameters.

4.
Micromachines (Basel) ; 14(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36677073

RESUMO

Super alloys offer excellent mechanical and chemical properties at elevated temperatures that make them an attractive choice for aerospace, automotive and chemical processing, and marine applications. These alloys are, however, difficult to machine due to their high strength at elevated temperatures, low thermal conductivity and work hardening. In this study, micro milling of Inconel 600 super alloy has been carried out and the effects of the key input parameters (cutting speed, feed rate, depth of cut) on response parameters (burr formation, surface roughness and tool wear), under various cooling conditions (dry, wet and cryogenic), have been analyzed. High speed micro milling (range up to 80,000 RPM) was carried out, while keeping the feed rate values below and above the cutting edge radius. The Taguchi design of experiments was used during this study. The results have been analyzed using SEM and 3D optical microscopy. Analysis of Variance (ANOVA) revealed that the best surface roughness values can be achieved under cryogenic machining condition with an overall contribution ratio of 28.69%. It was also revealed that cryogenic cooling resulted in the highest tool life with the contribution ratio of cooling conditions at 26.52%.

5.
Appl Opt ; 60(15): 4434-4442, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34143136

RESUMO

The life of ceramic tools restricts the development of the manufacturing industry and can be increased through the enhancement of surface performance. Laser surface texturing is a feasible technology to improve ceramic tool life based on the relationship between surface properties and the laser-texturing process. In this study, ${{\rm Al}_2}{{\rm O}_3}$ substrates have been textured by an ytterbium fiber laser system with a wavelength of 1064 nm and a pulse duration of 50 ns. First, the damage threshold of ${{\rm Al}_2}{{\rm O}_3}$ was measured to provide a basis for selecting laser-texturing parameters. The surface morphology was characterized using a white confocal scanning microscope and a scanning electron microscope to investigate the characteristics of laser processing. Water contact angles were measured to investigate the relationship between laser parameters and changes in wettability. The surface energy of the superhydrophobic ceramic was calculated based on the contact angle. Combined X-ray photoelectron spectroscopy (XPS) measurement was used to explore the mechanism of wettability changes from the chemical component and microstructure perspectives. The friction coefficient of ${{\rm Al}_2}{{\rm O}_3}$ was determined by a ball-on-disc wear test. The results showed that laser texturing can significantly improve the surface hydrophobicity and friction stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...