Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Phys Med ; 72: 142-151, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32276133

RESUMO

INTRODUCTION: Studies suggest there is utility in computed tomography (CT) radiomics for pancreatic disease; however, the precise biological interpretation of its features is unclear. In this manuscript, we present a novel approach towards this interpretation by investigating sub-micron tissue structure using digital pathology. METHODS: A classification-to attenuation (CAT) function was developed and applied to digital pathology images to create sub-micron linear attenuation maps. From these maps, grey level co-occurrence matrix (GLCM) features were extracted and compared to pathology features. To simulate the spatial frequency loss in a CT scanner, the attenuation maps were convolved with a point spread function (PSF) and subsequently down-sampled. GLCM features were extracted from these down-sampled maps to assess feature stability as a function of spatial frequency loss. RESULTS: Two GLCM features were shown to be strongly and positively correlated (r = 0.8) with underlying characteristics of the tumor microenvironment, namely percent pimonidazole staining in the tumor. All features underwent marked change as a function of spatial frequency loss; progressively larger spatial frequency losses resulted in progressively larger inter-tumor standard deviations; two GLCM features exhibited stability up to a 100 µm pixel size. CONCLUSION: This work represents a necessary step towards understanding the biological significance of radiomics. Our preliminary results suggest that cellular metrics of pimonidazole-detectable hypoxia correlate with sub-micron attenuation coefficient texture; however, the consistency of these textures in face of spatial frequency loss is detrimental for robust radiomics. Further study in larger data sets may elucidate additional, potentially more robust features of biologic and clinical relevance.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X
2.
Phys Med ; 72: 80-87, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32229424

RESUMO

INTRODUCTION: Monte Carlo (MC) simulations are a powerful tool for improving image quality in X-ray based imaging modalities. An accurate X-ray source model is essential to MC modeling for CBCT but can be difficult to implement on a GPU while maintaining efficiency and memory limitations. A statistical analysis of the photon distribution from a MC X-ray tube simulation is conducted in hopes of building a compact source model. MATERIALS & METHODS: MC simulations of an X-ray tube were carried out using BEAMnrc. The resulting photons were sorted into four categories: primary, scatter, off-focal radiation (OFR), and both (scatter and OFR). A statistical analysis of the photon components (energy, position, direction) was completed. A novel method for a compact (memory efficient) representation of the PHSP data was implemented and tested using different statistical based linear transformations (PCA, ZCA, ICA), as well as a geometrical transformation. RESULTS: The statistical analysis showed all photon groupings had strong correlations between position and direction, with the largest correlation in the primary data. The novel method was successful in compactly representing the primary (error < 2%) and scatter (error < 6%) photon groupings by reducing the component correlations. DISCUSSION & CONCLUSION: Statistical linear transforms provide a method of reducing the memory required to accurately simulate an X-ray source in a GPU MC system. If all photon types are required, the proposed method reduces the memory requirements by 3.8 times. When only primary and scatter data is needed, the memory requirement is reduced from gigabytes to kilobytes.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Método de Monte Carlo , Fótons
3.
Phys Med Biol ; 64(21): 215007, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31570668

RESUMO

A hybrid system for intraoperative cone-beam CT (CBCT) imaging and continuous-wave fluorescence tomography (FT) has been developed using an image-guidance framework. Intraoperative CBCT images with sub-millimeter spatial resolution are acquired with a flat-panel C-Arm. Tetrahedral meshes are generated from CBCT for finite element method implementation of diffuse optical tomography (NIRFAST). Structural data from CBCT is incorporated directly into the optical reconstruction process using Laplacian-type regularization ('soft spatial priors'). Experiments were performed using an in-house optical system designed for indocyanine green (ICG) fluorescence. A dynamic non-contact geometry was achieved using a stereoscopic optical tracker for real-time localization of a laser diode and CCD camera. Source and detector positions were projected onto the boundary elements of the tissue mesh using algorithms for ray-triangle intersection and camera lens calibration. Simulation studies showed the capabilities of a soft-prior approach, even in the presence of segmentation uncertainties. Experiments with ICG targets embedded in liquid phantoms determined the improvements in the quantification of the fluorophore yield, with errors of 85% and <20% for no priors and spatial priors, respectively. Similar results were observed with the ICG target embedded in ex vivo porcine loin, with errors of 52% and 12%, respectively. A proof-of-principal animal study was performed in a VX2-tumor in vivo rabbit model using liposomal nanoparticles co-encapsulating contrast for CT (iohexol) and fluorescence (ICG) imaging. Fusion of CBCT and FT reconstructions demonstrated concurrent anatomical and functional delineations of contrast enhancement around the periphery of the buccal tumor. These developments motivate future clinical translation of the FT system into an ongoing CBCT-guided head and neck surgery trial.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Óptica/métodos , Algoritmos , Animais , Calibragem , Humanos , Processamento de Imagem Assistida por Computador , Período Intraoperatório , Imagens de Fantasmas , Coelhos
4.
Phys Med Biol ; 64(13): 135021, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31276450

RESUMO

A non-contact approach for diffuse optical tomography (DOT) has been developed for on-demand image updates using surgical navigation technology. A stereoscopic optical tracker provides real-time localization of reflective spheres mounted to a laser diode and near-infrared camera. Standard camera calibration is combined with tracking data to determine the intrinsic camera parameters (focal length, principal point and non-linear lens distortion) and the tracker-to-camera transform. Tracker-to-laser calibration is performed using images of laser beam intersection with a tracked calibration surface. Source and detector positions for a finite-element DOT implementation are projected onto the boundary elements of the tissue mesh by finding ray-triangle intersections. A multi-stage model converts camera counts to surface flux by accounting for lens aperture settings, fluorescence filter transmittance, photodetector quantum efficiency, photon energy, exposure time, readout offset and camera gain. The image-guidance framework was applied to an in-house optical tomography system configured for indocyanine green (ICG) fluorescence. Mean target registration errors for camera and laser calibration were less than 1 mm. Surface flux measurements of total reflectance and fluorescence in Intralipid-based fluorescence phantoms (0-2 µg ml-1) had mean errors of 3.1% and 4.4%, respectively, relative to diffusion theory predictions. Spatially-resolved reflectance measurements in a calibrated optical phantom agreed with theory for radial distances up to 25 mm from the laser source. Inverse fluorescence reconstructions of a sub-surface fluorescence target confirmed the localization accuracy (average target centroid error of 0.44 mm). This translational research system is under investigation for clinical applications in head and neck surgery, including oral cavity tumor resection, lymph node mapping and free-flap perforator assessment.


Assuntos
Fluorescência , Tomografia/métodos , Calibragem , Desenho de Equipamento , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Imagens de Fantasmas , Tomografia/instrumentação
6.
Eur J Radiol ; 106: 192-198, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30150044

RESUMO

PURPOSE: Standardization and protocol optimization is essential for quantification of Dynamic Contrast Enhanced CT as an imaging biomarker. Currently, no commercially available quality assurance (QA) phantoms can provide for testing a complete set of imaging parameters pertaining to routine quality control for contrast-enhanced (CE) CT, as well as spatiotemporal accuracy. The purpose of this work was, therefore: (a) developing a solid calibration phantom for routine CE CT quality assurance; (b) investigating the sensitivity of CECT to organ motion, and (c) characterizing a volumetric CT scanner for CECT. METHODS: CECT calibration phantom consisting of an acrylic uniform cylinder containing multiple capsules of varying diameters and orientations was designed and built. The capsules contain different solid density materials mimicking iodine contrast enhancement. Sensitivity and accuracy of CECT measurements on all capsules was performed using a 320-slice CT scanner for a range of scan parameters both with and without phantom motion along the transaxial axis of the scanner. RESULTS: Routine commissioning tests such as uniformity, spatial resolution and image noise were successfully determined using the CECT phantom. Partial volume effect and motion blurring both contribute to a general decrease in contrast enhancement and this was further dependent on capsule orientation (least pronounced for the transaxial orientation). Scanning with a rotation time of less than 0.5 s, the effect of blurring is less than 3% for all orientations and phantom speeds. CONCLUSION: A new robust contrast calibration phantom was developed and used to evaluate the performance of a 320-slice volumetric CT scanner for DCE-CT.


Assuntos
Meios de Contraste , Imagens de Fantasmas , Controle de Qualidade , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Phys Med Biol ; 63(7): 075010, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29493533

RESUMO

The design, construction and application of a multimodality, 3D magnetic resonance/computed tomography (MR/CT) image distortion phantom and analysis system for stereotactic radiosurgery (SRS) is presented. The phantom is characterized by (1) a 1 × 1 × 1 (cm)3 MRI/CT-visible 3D-Cartesian grid; (2) 2002 grid vertices that are 3D-intersections of MR-/CT-visible 'lines' in all three orthogonal planes; (3) a 3D-grid that is MR-signal positive/CT-signal negative; (4) a vertex distribution sufficiently 'dense' to characterize geometrical parameters properly, and (5) a grid/vertex resolution consistent with SRS localization accuracy. When positioned correctly, successive 3D-vertex planes along any orthogonal axis of the phantom appear as 1 × 1 (cm)2-2D grids, whereas between vertex planes, images are defined by 1 × 1 (cm)2-2D arrays of signal points. Image distortion is evaluated using a centroid algorithm that automatically identifies the center of each 3D-intersection and then calculates the deviations dx, dy, dz and dr for each vertex point; the results are presented as a color-coded 2D or 3D distribution of deviations. The phantom components and 3D-grid are machined to sub-millimeter accuracy, making the device uniquely suited to SRS applications; as such, we present it here in a form adapted for use with a Leksell stereotactic frame. Imaging reproducibility was assessed via repeated phantom imaging across ten back-to-back scans; 80%-90% of the differences in vertex deviations dx, dy, dz and dr between successive 3 T MRI scans were found to be ⩽0.05 mm for both axial and coronal acquisitions, and over >95% of the differences were observed to be ⩽0.05 mm for repeated CT scans, clearly demonstrating excellent reproducibility. Applications of the 3D-phantom/analysis system are presented, using a 32-month time-course assessment of image distortion/gradient stability and statistical control chart for 1.5 T and 3 T GE TwinSpeed MRI systems.


Assuntos
Algoritmos , Imageamento Tridimensional/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Neoplasias/diagnóstico por imagem , Imagens de Fantasmas , Radiocirurgia/métodos , Tomografia Computadorizada por Raios X/instrumentação , Desenho de Equipamento , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias/cirurgia , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos
8.
Cardiovasc Eng Technol ; 7(3): 238-53, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27357301

RESUMO

Most existing studies of cardiac arrhythmia rely on surface measurements through optical or electrical mapping techniques. Current density imaging (CDI) is a method which enables us to study current pathways inside the tissue. However, this method entails implementation complexities for beating ex vivo hearts. Hence, this work presents an approach to simulate and study the current distributions in different cardiac electrophysiological states. The results are corroborated by experimental data, and they indicate that different states were distinguishable. The CDI simulations can be used for studying cardiac arrhythmias under simulation conditions which are otherwise impossible or difficult to be implemented experimentally.


Assuntos
Eletrofisiologia Cardíaca/métodos , Modelos Cardiovasculares , Animais , Imagem de Tensor de Difusão , Coração/fisiologia , Suínos
10.
Med Phys ; 42(1): 54-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25563247

RESUMO

PURPOSE: X-ray scatter is a significant impediment to image quality improvements in cone-beam CT (CBCT). The authors present and demonstrate a novel scatter correction algorithm using a scatter estimation method that simultaneously combines multiple Monte Carlo (MC) CBCT simulations through the use of a concurrently evaluated fitting function, referred to as concurrent MC fitting (CMCF). METHODS: The CMCF method uses concurrently run MC CBCT scatter projection simulations that are a subset of the projection angles used in the projection set, P, to be corrected. The scattered photons reaching the detector in each MC simulation are simultaneously aggregated by an algorithm which computes the scatter detector response, SMC. SMC is fit to a function, SF, and if the fit of SF is within a specified goodness of fit (GOF), the simulations are terminated. The fit, SF, is then used to interpolate the scatter distribution over all pixel locations for every projection angle in the set P. The CMCF algorithm was tested using a frequency limited sum of sines and cosines as the fitting function on both simulated and measured data. The simulated data consisted of an anthropomorphic head and a pelvis phantom created from CT data, simulated with and without the use of a compensator. The measured data were a pelvis scan of a phantom and patient taken on an Elekta Synergy platform. The simulated data were used to evaluate various GOF metrics as well as determine a suitable fitness value. The simulated data were also used to quantitatively evaluate the image quality improvements provided by the CMCF method. A qualitative analysis was performed on the measured data by comparing the CMCF scatter corrected reconstruction to the original uncorrected and corrected by a constant scatter correction reconstruction, as well as a reconstruction created using a set of projections taken with a small cone angle. RESULTS: Pearson's correlation, r, proved to be a suitable GOF metric with strong correlation with the actual error of the scatter fit, SF. Fitting the scatter distribution to a limited sum of sine and cosine functions using a low-pass filtered fast Fourier transform provided a computationally efficient and accurate fit. The CMCF algorithm reduces the number of photon histories required by over four orders of magnitude. The simulated experiments showed that using a compensator reduced the computational time by a factor between 1.5 and 1.75. The scatter estimates for the simulated and measured data were computed between 35-93 s and 114-122 s, respectively, using 16 Intel Xeon cores (3.0 GHz). The CMCF scatter correction improved the contrast-to-noise ratio by 10%-50% and reduced the reconstruction error to under 3% for the simulated phantoms. CONCLUSIONS: The novel CMCF algorithm significantly reduces the computation time required to estimate the scatter distribution by reducing the statistical noise in the MC scatter estimate and limiting the number of projection angles that must be simulated. Using the scatter estimate provided by the CMCF algorithm to correct both simulated and real projection data showed improved reconstruction image quality.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Espalhamento de Radiação , Humanos , Pelve/diagnóstico por imagem , Imagens de Fantasmas
11.
Med Phys ; 41(12): 121911, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25471971

RESUMO

PURPOSE: X-ray fluoroscopy remains an important imaging modality in a number of image-guided procedures due to its real-time nature and excellent spatial detail. However, the radiation dose delivered raises concerns about its use particularly in lengthy treatment procedures (>0.5 h). The authors have previously presented an algorithm that employs feedback of geometric uncertainty to control dose while maintaining a desired targeting uncertainty during fluoroscopic tracking of fiducials. The method was tested using simulations of motion against controlled noise fields. In this paper, the authors embody the previously reported method in a physical prototype and present changes to the controller required to function in a practical setting. METHODS: The metric for feedback used in this study is based on the trace of the covariance of the state of the system, tr(C). The state is defined here as the 2D location of a fiducial on a plane parallel to the detector. A relationship between this metric and the tube current is first developed empirically. This relationship is extended to create a manifold that incorporates a latent variable representing the estimated background attenuation. The manifold is then used within the controller to dynamically adjust the tube current and maintain a specified targeting uncertainty. To evaluate the performance of the proposed method, an acrylic sphere (1.6 mm in diameter) was tracked at tube currents ranging from 0.5 to 0.9 mA (0.033 s) at a fixed energy of 80 kVp. The images were acquired on a Varian Paxscan 4030A (2048 × 1536 pixels, ∼ 100 cm source-to-axis distance, ∼ 160 cm source-to-detector distance). The sphere was tracked using a particle filter under two background conditions: (1) uniform sheets of acrylic and (2) an acrylic wedge. The measured tr(C) was used in conjunction with a learned manifold to modulate the tube current in order to maintain a specified uncertainty as the sphere traversed regions of varying thickness corresponding to the acrylic sheets in the background. RESULTS: With feedback engaged, the tracking error was found to correlate well with the specified targeting uncertainty. Tracking of the fiducial was found to be robust to changes in the attenuation presented by the varying background conditions. For a desired uncertainty of 5.0 mm, comparison of the feedback framework with a comparable system employing fixed exposure demonstrated dose savings of 29%. CONCLUSIONS: This work presents a relation between a state descriptor, tr(C), the x-ray tube current used, and an estimate of the background attenuation. This relation is leveraged to modulate the tube current in order to maintain a desired geometric uncertainty during fluoroscopy. The authors' work demonstrates the use of the method in a real x-ray fluoroscopy system with physical motion against varying backgrounds. The method offers potential savings in imaging dose to patients and staff while maintaining tracking uncertainty during fluoroscopy-guided treatment procedures.


Assuntos
Fluoroscopia/métodos , Simulação por Computador , Marcadores Fiduciais , Fluoroscopia/instrumentação , Movimento (Física) , Incerteza
12.
Med Phys ; 41(3): 031714, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24593718

RESUMO

PURPOSE: To compare the dosimetric and geometric properties of a commercial x-ray based image-guided small animal irradiation system, installed at three institutions and to establish a complete and broadly accessible commissioning procedure. METHODS: The system consists of a 225 kVp x-ray tube with fixed field size collimators ranging from 1 to 44 mm equivalent diameter. The x-ray tube is mounted opposite a flat-panel imaging detector, on a C-arm gantry with 360° coplanar rotation. Each institution performed a full commissioning of their system, including half-value layer, absolute dosimetry, relative dosimetry (profiles, percent depth dose, and relative output factors), and characterization of the system geometry and mechanical flex of the x-ray tube and detector. Dosimetric measurements were made using Farmer-type ionization chambers, small volume air and liquid ionization chambers, and radiochromic film. The results between the three institutions were compared. RESULTS: At 225 kVp, with 0.3 mm Cu added filtration, the first half value layer ranged from 0.9 to 1.0 mm Cu. The dose-rate in-air for a 40 × 40 mm(2) field size, at a source-to-axis distance of 30 cm, ranged from 3.5 to 3.9 Gy/min between the three institutions. For field sizes between 2.5 mm diameter and 40 × 40 mm(2), the differences between percent depth dose curves up to depths of 3.5 cm were between 1% and 4% on average, with the maximum difference being 7%. The profiles agreed very well for fields >5 mm diameter. The relative output factors differed by up to 6% for fields larger than 10 mm diameter, but differed by up to 49% for fields ≤5 mm diameter. The mechanical characteristics of the system (source-to-axis and source-to-detector distances) were consistent between all three institutions. There were substantial differences in the flex of each system. CONCLUSIONS: With the exception of the half-value layer, and mechanical properties, there were significant differences between the dosimetric and geometric properties of the three systems. This underscores the need for careful commissioning of each individual system for use in radiobiological experiments.


Assuntos
Radiometria/métodos , Radioterapia Guiada por Imagem/métodos , Animais , Calibragem , Desenho de Equipamento , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria/instrumentação , Radioterapia Conformacional/métodos , Reprodutibilidade dos Testes , Software , Raios X
13.
Artigo em Inglês | MEDLINE | ID: mdl-25570148

RESUMO

Spatial distribution of injected current in a subject could be calculated and visualized through current density imaging (CDI). Calculated CDI paths however have a limited degree of accuracy due to both avoidable methodological errors and inevitable limitations dictated by MR imaging constraints. The source and impact of these limitations are scrutinized in this paper. Quantification of such limitations is an essential step prior to passing any judgment about the results especially in biomedical applications. An innovative technique along with metrics for evaluation of range of errors using baseline and phase cycle MR images is proposed in this work. The presented approach is helpful in pinpointing the local artifacts (areas for which CDI results are suspect), evaluation of global noises and artifacts and assessment of the effect of approximation algorithms on real and artifactual components. We will demonstrate how this error/reliability evaluation is applicable to interpretation of CDI results and in this framework, report the CDI results for an artificial phantom and a live pig heart in Langendorff setup. It is contended here that using this method, the inevitable trade-off between details and approximations of CDI components could be monitored which provides a great opportunity for robust interpretation of results. The proposed approach could be extended, adapted and used for statistical analysis of similar methods which aim at mapping current and impedance based on magnetic flux images obtained through MRI.


Assuntos
Artefatos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Animais , Impedância Elétrica , Humanos , Miocárdio/patologia , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sus scrofa , Suínos
14.
Artigo em Inglês | MEDLINE | ID: mdl-25571259

RESUMO

Magnetic Resonance Imaging (MRI) techniques such as Current Density Imaging (CDI) and Diffusion Tensor Imaging (DTI) provide a complementing set of imaging data that can describe both the functional and structural states of biological tissues. This paper presents a Joint Independent Component Analysis (jICA) based fusion approach which can be utilized to fuse CDI and DTI data to quantify the differences between two cardiac states: Ventricular Fibrillation (VF) and Asystolic/Normal (AS/NM). Such an approach could lead to a better insight on the mechanism of VF. Fusing CDI and DTI data from 8 data sets from 6 beating porcine hearts, in effect, detects the differences between two cardiac states, qualitatively and quantitatively. This initial study demonstrates the applicability of MRI-based imaging techniques and jICA-based fusion approach in studying cardiac arrhythmias.


Assuntos
Coração/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Fibrilação Ventricular/patologia , Fibrilação Ventricular/fisiopatologia , Algoritmos , Animais , Imagem de Tensor de Difusão , Técnicas In Vitro , Sus scrofa
15.
Med Phys ; 40(11): 111901, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24320434

RESUMO

PURPOSE: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis. METHODS: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6 cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1°, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections. RESULTS: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm(-1) and 7/(2π) rad(-1) for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and π/7 rad (~25°) can be used to properly capture the scatter distribution, with reduced sampling possible depending on the imaging scenario. Using a low-pass Butterworth filter, tuned with the SFW values, to denoise the scatter projection data generated from MC simulations using 10(6) photons resulted in an error reduction of greater than 85% for the estimating scatter in single and multiple projections. Analysis showed that the use of a compensator helped reduce the error in estimating the scatter distribution from limited photon simulations by more than 37% when compared to the case without a compensator for the head and pelvis phantoms. Reconstructions of simulated head phantom projections corrected by the filtered and interpolated scatter estimates showed improvements in overall image quality. CONCLUSIONS: The spatial frequency content of the scatter distribution in CBCT is found to be contained within the low frequency domain. The frequency content is modulated both by object and imaging parameters (ADD and compensator). The low-frequency nature of the scatter distribution allows for a limited set of sine and cosine basis functions to be used to accurately represent the scatter signal in the presence of noise and reduced data sampling decreasing MC based scatter estimation time. Compensator induced modulation of the scatter distribution reduces the frequency content and improves the fitting results.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Espalhamento de Radiação , Algoritmos , Antropometria , Simulação por Computador , Análise de Fourier , Cabeça/diagnóstico por imagem , Humanos , Método de Monte Carlo , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Fótons , Interpretação de Imagem Radiográfica Assistida por Computador , Reprodutibilidade dos Testes , Software , Raios X
16.
Artigo em Inglês | MEDLINE | ID: mdl-24110707

RESUMO

Low frequency current density imaging (LFCDI) is a magnetic resonance imaging (MRI) technique which enables calculation of current pathways within the medium of study. The induced current produces a magnetic flux which presents itself in phase images obtained through MRI scanning. A class of LFCDI challenges arises from the subject rotation requirement, which calls for reliability analysis metrics and specific image registration techniques. In this study these challenges are formulated and in light of proposed discussions, the reliability analysis of calculation of current pathways in a designed phantom and a pig heart is presented. The current passed is measured with less than 5% error for phantom, using CDI method. It is shown that Gauss's law for magnetism can be treated as reliability metric in matching the images in two orientations. For the phantom and pig heart the usefulness of image registration for mitigation of rotation errors is demonstrated. The reliability metric provides a good representation of the degree of correspondence between images in two orientations for phantom and pig heart. In our CDI experiments this metric produced values of 95% and 26%, for phantom, and 88% and 75% for pig heart, for mismatch rotations of 0 and 20 degrees respectively.


Assuntos
Coração/fisiologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Animais , Imagens de Fantasmas , Reprodutibilidade dos Testes , Software , Suínos
17.
Med Phys ; 39(12): 7185-93, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23231269

RESUMO

PURPOSE: MR image geometric integrity is one of the building blocks of MRI-guided radiotherapy. In particular, tissue magnetic susceptibility-induced effects are patient-dependent and their behavior is difficult to assess and predict. In this study, the authors investigated in detail the characteristics of susceptibility (χ) distortions in the context of MRIgRT, including the case of two common MR-linac system configurations. METHODS: The magnetic field distortions were numerically simulated for several imaging parameters and anatomical sites, i.e., brain, lung, pelvis (with air pockets), and prostate. The simulation process consisted of (a) segmentation of patient CT data into susceptibility relevant anatomical volumes (i.e., soft-tissue, bone and air∕lung), (b) conversion of CT data into susceptibility masks by assigning bulk χ values to the structures defined at (a), (c) numerical computations of the local magnetic fields by using a finite difference algorithm, and (d) generation of the geometric distortion maps from the magnetic field distributions. For each patient anatomy, the distortions were quantified at the interfaces of anatomical structures with significantly different χ values. The analysis was performed for two specific orientations of the external main magnetic field (B(0)) characteristic to the MR-linac systems, specifically along the z-axis for a bore MR scanner and in the (x,y)-plane for a biplanner magnet. The magnetic field local perturbations were reported in ppm. The metrics used to quantify the geometric distortions were the maximum, mean, and range of distortions. The numerical simulation algorithm was validated using phantom data measurements. RESULTS: Susceptibility-induced distortions were determined for both quadratic and patient specific geometries. The numerical simulations showed a good agreement with the experimental data. The measurements were acquired at 1.5 and 3 T and with an encoding gradient varying between 3 and 20 mT∕m by using an annular phantom mimicking the water-air and water-oil χ interfaces. For quadratic geometries, the magnitude of field distortion increased rapidly with the size of the inhomogeneity up to about 10 mm and then tended to plateau. This trend became more evident for materials with a larger Δχ relative to water. The simulations showed only a slight increase in the maximum distortion values when the B(0) orientation was varied with regard to the shape of the χ inhomogeneity. In the case of patient anatomy, the largest distortion values arose at the air-soft-tissue interface. Considering the two MR-linac system configurations and comparing the field distortion values corresponding to all organ structures, the distortions tended to be larger for the biplanar magnet. The authors provide a reference table with ppm values which can be used to easily evaluate the geometric distortions for patient data as a function of B(0) and the strength of the encoding gradient. CONCLUSIONS: The susceptibility distortions were quantified as a function of multiple parameters such as the χ inhomogeneity size and shape, the magnitude of B(0) and the readout gradient, and the orientation of B(0) with respect to the sample geometry. The analysis was performed for several anatomical sites and corresponding to two B(0) orientations as featured by MR-linac systems.


Assuntos
Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Radioterapia Conformacional/métodos , Radioterapia Guiada por Imagem/métodos , Simulação por Computador , Humanos , Campos Magnéticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Radiat Res ; 177(4): 331-48, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22332928
19.
Med Phys ; 38(12): 6458-68, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22149829

RESUMO

PURPOSE: Target delineation within volumetric imaging is a critical step in the planning process of intensity modulated radiation therapy. In endoluminal cancers, endoscopy often reveals superficial areas of visible disease beyond what is seen on volumetric imaging. Quantitatively relating these findings to the volumetric imaging is prone to human error during the recall and contouring of the target. We have developed a method to improve target delineation in the radiation therapy planning process by quantitatively registering endoscopic findings contours traced on endoscopic images to volumetric imaging. METHODS: Using electromagnetic sensors embedded in an endoscope, 2D endoscopic images were registered to computed tomography (CT) volumetric images by tracking the position and orientation of the endoscope relative to a CT image set. Regions-of-interest (ROI) in the 2D endoscopic view were delineated. A mesh created within the boundary of the ROI was projected onto the 3D image data, registering the ROI with the volumetric image. This 3D ROI was exported to clinical radiation treatment planning software. The precision and accuracy of the procedure was tested on two solid phantoms with superficial markings visible on both endoscopy and CT images. The first phantom was T-shaped tube with X-marks etched on the interior. The second phantom was an anatomically correct skull phantom with a phantom superficial lesion placed on the pharyngeal surface. Markings were contoured on the endoscope images and compared with contours delineated in the treatment planning system based on the CT images. Clinical feasibility was tested on three patients with early stage glottic cancer. Image-based rendering using manually identified landmarks was used to improve the registration. RESULTS: Using the T-shaped phantom with X-markings, the 2D to 3D registration accuracy was 1.5-3.5 mm, depending on the endoscope position relative to the markings. Intraobserver standard variation was 0.5 mm. Rotational accuracy was within 2°. Using the skull phantom, registration accuracy was assessed by calculating the average surface minimum distance between the endoscopy and treatment planning contours. The average surface distance was 0.92 mm with 93% of all points in the 2D-endoscopy ROI within 1.5 mm of any point within the ROI contoured in the treatment planning software. This accuracy is limited by the CT imaging resolution and the electromagnetic (EM) sensor accuracy. The clinical testing demonstrated that endoscopic contouring is feasible. With registration based on em tracking only, accuracy was 5.6-8.4 mm. Image-based registration reduced this error to less than 3.5 mm and enabled endoscopic contouring in all cases. CONCLUSIONS: Registration of contours generated on 2D endoscopic images to 3D planning space is feasible, with accuracy smaller than typical set-up margins. Used in addition to standard 3D contouring methods in radiation planning, the technology may improve gross tumour volume (GTV) delineation for superficial tumors in luminal sites that are only visible in endoscopy.


Assuntos
Endoscopia/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Radioterapia Conformacional/métodos , Radioterapia Guiada por Imagem/métodos , Técnica de Subtração , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Med Phys ; 38(5): 2494-507, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21776784

RESUMO

PURPOSE: There is a growing concern regarding the dose delivered during x-ray fluoroscopy guided procedures, particularly in interventional cardiology and neuroradiology, and in real-time tumor tracking radiotherapy and radiosurgery. Many of these procedures involve long treatment times, and as such, there is cause for concern regarding the dose delivered and the associated radiation related risks. An insufficient dose, however, may convey less geometric information, which may lead to inaccuracy and imprecision in intervention placement. The purpose of this study is to investigate a method for achieving the required tracking uncertainty for a given interventional procedure using minimal dose. METHODS: A simple model is used to demonstrate that a relationship exists between imaging dose and tracking uncertainty. A feedback framework is introduced that exploits this relationship to modulate the tube current (and hence the dose) in order to maintain the required uncertainty for a given interventional procedure. This framework is evaluated in the context of a fiducial tracking problem associated with image-guided radiotherapy in the lung. A particle filter algorithm is used to robustly track the fiducial as it traverses through regions of high and low quantum noise. Published motion models are incorporated in a tracking test suite to evaluate the dose-localization performance trade-offs. RESULTS: It is shown that using this framework, the entrance surface exposure can be reduced by up to 28.6% when feedback is employed to operate at a geometric tracking uncertainty of 0.3 mm. CONCLUSIONS: The analysis reveals a potentially powerful technique for dynamic optimization of fluoroscopic imaging parameters to control the applied dose by exploiting the trade-off between tracking uncertainty and x-ray exposure per frame.


Assuntos
Algoritmos , Fluoroscopia/métodos , Doses de Radiação , Proteção Radiológica/métodos , Intensificação de Imagem Radiográfica/métodos , Retroalimentação , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...