Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroinformatics ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656595

RESUMO

Magnetic Resonance Imaging (MRI) plays an important role in neurology, particularly in the precise segmentation of brain tissues. Accurate segmentation is crucial for diagnosing brain injuries and neurodegenerative conditions. We introduce an Enhanced Spatial Fuzzy C-means (esFCM) algorithm for 3D T1 MRI segmentation to three tissues, i.e. White Matter (WM), Gray Matter (GM), and Cerebrospinal Fluid (CSF). The esFCM employs a weighted least square algorithm utilizing the Structural Similarity Index (SSIM) for polynomial bias field correction. It also takes advantage of the information from the membership function of the last iteration to compute neighborhood impact. This strategic refinement enhances the algorithm's adaptability to complex image structures, effectively addressing challenges such as intensity irregularities and contributing to heightened segmentation accuracy. We compare the segmentation accuracy of esFCM against four variants of FCM, Gaussian Mixture Model (GMM) and FSL and ANTs algorithms using four various dataset, employing three measurement criteria. Comparative assessments underscore esFCM's superior performance, particularly in scenarios involving added noise and bias fields.The obtained results emphasize the significant potential of the proposed method in the segmentation of MRI images.

2.
Comput Methods Programs Biomed ; 242: 107805, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37738840

RESUMO

Preterm infants are a highly vulnerable population. The total brain volume (TBV) of these infants can be accurately estimated by brain ultrasound (US) imaging which enables a longitudinal study of early brain growth during Neonatal Intensive Care (NICU) admission. Automatic estimation of TBV from 3D images increases the diagnosis speed and evades the necessity for an expert to manually segment 3D images, which is a sophisticated and time consuming task. We develop a deep-learning approach to estimate TBV from 3D ultrasound images. It benefits from deep convolutional neural networks (CNN) with dilated residual connections and an additional layer, inspired by the fuzzy c-Means (FCM), to further separate the features into different regions, i.e. sift layer. Therefore, we call this method deep-sift convolutional neural networks (DSCNN). The proposed method is validated against three state-of-the-art methods including AlexNet-3D, ResNet-3D, and VGG-3D, for TBV estimation using two datasets acquired from two different ultrasound devices. The results highlight a strong correlation between the predictions and the observed TBV values. The regression activation maps are used to interpret DSCNN, allowing TBV estimation by exploring those pixels that are more consistent and plausible from an anatomical standpoint. Therefore, it can be used for direct estimation of TBV from 3D images without needing further image segmentation.


Assuntos
Recém-Nascido Prematuro , Redes Neurais de Computação , Recém-Nascido , Humanos , Estudos Longitudinais , Imageamento Tridimensional/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...