Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Biol ; 123(7): 517-527, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31196521

RESUMO

Exploring the secondary structure information of nuclear ribosomal internal transcribed spacer 2 (ITS2) has been a promising approach in species delimitation. However, Compensatory base changes (CBC) concept employed in this approach turns futile when CBC is absent. This prompted us to investigate the utility of insertion/deletion (INDELs) and substitutions in fungal delineation at species level. Upon this rationale, 116 strains representing 97 species, belonging to 6 genera (Colletotrichum, Boeremia, Leptosphaeria, Peyronellaea, Plenodomus and Stagonosporopsis) of Ascomycota were retrieved from Q-bank for molecular morphometric analysis. CBC, INDELs and substitutions between the species of their respective genus were recorded. Most species combinations lacked CBC. Among the substitution events, transitions were predominant. INDELs were less frequent than the substitutions. These evolutionary events were mapped upon the helices to discern species specific variation sites. In 68 species unique variation sites were recognised. The remaining 29 species shared absolute similarity with distinctly named species. The variation sites catalogued in them overlapped with other distinct species and resulted in the blurring of species boundaries. Species specific variation sites recognized in this study are the preliminary results and they could be discerned with absolute confidence when larger datasets encompassing all described species of genera were investigated. They could be of potential use in barcoding fungi at species level. This study also concludes that the ITS2 molecular morphometric analysis is an efficient third dimensional study of the fungal species delimitation. This may help to avoid the false positives in species delimitations and to alleviate the challenges in molecular characterization.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , DNA Fúngico/química , DNA Espaçador Ribossômico/química , Filogenia , Sequência de Bases , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Evolução Molecular , Variação Genética , Conformação de Ácido Nucleico , Projetos Piloto , Especificidade da Espécie
2.
PLoS One ; 14(4): e0215024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30964914

RESUMO

Molecular morphometrics is an emerging third dimensional aspect of fungal species delimitation. They have been demonstrated to be more informative than conventional barcoding methods. Hence in this study, foliar endophytic fungal (FEF) assemblages in three Magnoliopsida plants were delimited using nuclear ribosomal internal transcribed spacer 2 (ITS2) sequence-secondary structural features based phylogenetic analysis, also known as molecular morphometrics. A total of 392 FEF isolates were obtained from the Aglaia elaeagnoidea, Flacourtia inermis, and Premna serratifolia leaves and grouped into 98 morphotypes. Among these host plants, P. serratifolia showed the maximum percentage of colonization frequency. Representatives of each morphotype was sequenced and subjected to further molecular characterization. The results revealed that morphotypes were belonged to the phylum of Ascomycota, distributed over two classes (Sordariomycetes (68.59%) and Dothideomycetes (31.41%)), 6 orders and 19 genera. Based on compensatory base changes (CBC) analysis and absolute identity of ITS2 structure, 21, 20 and 23 species were recognized from A. elaeagnoidea, F. inermis, and P. serratifolia respectively. Diversity indices were higher in A. elaeagnoidea, despite it accounted for a modest 16.8% of total isolates recorded in this study. The genus Colletotrichum was predominant in A. elaeagnoidea (39%) and P. serratifolia (48%). Similarly, Diaporthe (43%) was dominant in F. inermis. Several host-specific species were also observed. This study concludes that these plants host diverse species of Ascomycota. To the best of our knowledge, this is the first detailed report on FEF diversity from these plants. Also, the inclusion of ITS2 secondary structure information along with the sequence provides a further dimension to resolve the inherent problems in identification of fungal species.


Assuntos
Aglaia/genética , Ascomicetos/fisiologia , DNA Espaçador Ribossômico/genética , Endófitos/fisiologia , Flacourtia/genética , Lamiaceae/genética , Aglaia/microbiologia , Ascomicetos/genética , Biodiversidade , DNA Fúngico/genética , Flacourtia/microbiologia , Lamiaceae/microbiologia , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...