Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397090

RESUMO

Volatile anesthetics have been shown in different studies to reduce ischemia reperfusion injury (IRI). Ex vivo lung perfusion (EVLP) facilitates graft evaluation, extends preservation time and potentially enables injury repair and improvement of lung quality. We hypothesized that ventilating lungs with sevoflurane during EVLP would reduce lung injury and improve lung function. We performed a pilot study to test this hypothesis in a slaughterhouse sheep DCD model. Lungs were harvested, flushed and stored on ice for 3 h, after which EVLP was performed for 4 h. Lungs were ventilated with either an FiO2 of 0.4 (EVLP, n = 5) or FiO2 of 0.4 plus sevoflurane at a 2% end-tidal concentration (Cet) (S-EVLP, n = 5). Perfusate, tissue samples and functional measurements were collected and analyzed. A steady state of the target Cet sevoflurane was reached with measurable concentrations in perfusate. Lungs in the S-EVLP group showed significantly better dynamic lung compliance than those in the EVLP group (p = 0.003). Oxygenation capacity was not different in treated lungs for delta partial oxygen pressure (PO2; +3.8 (-4.9/11.1) vs. -11.7 (-12.0/-3.2) kPa, p = 0.151), but there was a trend of a better PO2/FiO2 ratio (p = 0.054). Perfusate ASAT levels in S-EVLP were significantly reduced compared to the control group (198.1 ± 93.66 vs. 223.9 ± 105.7 IU/L, p = 0.02). We conclude that ventilating lungs with sevoflurane during EVLP is feasible and could be useful to improve graft function.


Assuntos
Transplante de Pulmão , Animais , Ovinos , Sevoflurano/farmacologia , Estudos de Viabilidade , Projetos Piloto , Preservação de Órgãos , Pulmão , Perfusão
2.
Front Immunol ; 13: 831371, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911712

RESUMO

Background: The gap between demand and supply of kidneys for transplantation necessitates the use of kidneys from extended criteria donors. Transplantation of these donor kidneys is associated with inferior results, reflected by an increased risk of delayed graft function. Inferior results might be explained by the higher immunogenicity of extended criteria donor kidneys. Normothermic machine perfusion (NMP) could be used as a platform to assess the quality and function of donor kidneys. In addition, it could be useful to evaluate and possibly alter the immunological response of donor kidneys. In this study, we first evaluated whether complement was activated during NMP of porcine and human discarded kidneys. Second, we examined the relationship between complement activation and pro-inflammatory cytokines during NMP. Third, we assessed the effect of complement activation on renal function and injury during NMP of porcine kidneys. Lastly, we examined local complement C3d deposition in human renal biopsies after NMP. Methods: NMP with a blood-based perfusion was performed with both porcine and discarded human kidneys for 4 and 6 h, respectively. Perfusate samples were taken every hour to assess complement activation, pro-inflammatory cytokines and renal function. Biopsies were taken to assess histological injury and complement deposition. Results: Complement activation products C3a, C3d, and soluble C5b-9 (sC5b-9) were found in perfusate samples taken during NMP of both porcine and human kidneys. In addition, complement perfusate levels positively correlated with the cytokine perfusate levels of IL-6, IL-8, and TNF during NMP of porcine kidneys. Porcine kidneys with high sC5b-9 perfusate levels had significantly lower creatinine clearance after 4 h of NMP. In line with these findings, high complement perfusate levels were seen during NMP of human discarded kidneys. In addition, kidneys retrieved from brain-dead donors had significantly higher complement perfusate levels during NMP than kidneys retrieved from donors after circulatory death. Conclusion: Normothermic kidney machine perfusion induces complement activation in porcine and human kidneys, which is associated with the release of pro-inflammatory cytokines and in porcine kidneys with lower creatinine clearance. Complement inhibition during NMP might be a promising strategy to reduce renal graft injury and improve graft function prior to transplantation.


Assuntos
Rim , Preservação de Órgãos , Animais , Proteínas do Sistema Complemento , Creatinina , Citocinas , Humanos , Rim/patologia , Rim/fisiologia , Preservação de Órgãos/métodos , Perfusão/métodos , Suínos
3.
Am J Transplant ; 21(3): 993-1002, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32743873

RESUMO

In brain-dead donors immunological activation occurs, which deteriorates donor lung quality. Whether the complement system is activated and which pathways are herein involved, remain unknown. We aimed to investigate whether brain death (BD)-induced lung injury is complement dependent and dissected the contribution of the complement activation pathways. BD was induced and sustained for 3 hours in wild-type (WT) and complement deficient mice. C3-/- mice represented total complement deficiency, C4-/- mice represented deficiency of the classical and lectin pathway, and factor properdin (P)-/- mice represented alternative pathway deficiency. Systemic and local complement levels, histological lung injury, and pulmonary inflammation were assessed. Systemic and local complement levels were reduced in C3-/- mice. In addition, histological lung injury and inflammation were attenuated, as corroborated by influx of neutrophils and gene expressions of interleukin (IL)-6, IL-8-like KC, TNF-α, E-selectin, and MCP-1. In C4-/- mice, complement was reduced on both systemic and local levels and histological lung injury and inflammatory status were ameliorated. In P-/- mice, histological lung injury was attenuated, though systemic and local complement levels, IL-6 and KC gene expressions, and neutrophil influx were not affected. We demonstrated that BD-induced lung injury is complement dependent, with a primary role for the classical/lectin activation pathway.


Assuntos
Morte Encefálica , Lesão Pulmonar , Animais , Ativação do Complemento , Inflamação , Lectinas , Lesão Pulmonar/etiologia , Camundongos
4.
Front Immunol ; 10: 2528, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736957

RESUMO

Introduction: The majority of kidneys used for transplantation are retrieved from brain-dead organ donors. In brain death, the irreversible loss of brain functions results in hemodynamic instability, hormonal changes and immunological activation. Recently, brain death has been shown to cause activation of the complement system, which is adversely associated with renal allograft outcome in recipients. Modulation of the complement system in the brain-dead donor might be a promising strategy to improve organ quality before transplantation. This study investigated the effect of an inhibitory antibody against complement factor B on brain death-induced renal inflammation and injury. Method: Brain death was induced in male Fischer rats by inflating a balloon catheter in the epidural space. Anti-factor B (anti-FB) or saline was administered intravenously 20 min before the induction of brain death (n = 8/group). Sham-operated rats served as controls (n = 4). After 4 h of brain death, renal function, renal injury, and inflammation were assessed. Results: Pretreatment with anti-FB resulted in significantly less systemic and local complement activation than in saline-treated rats after brain death. Moreover, anti-FB treatment preserved renal function, reflected by significantly reduced serum creatinine levels compared to saline-treated rats after 4 h of brain death. Furthermore, anti-FB significantly attenuated histological injury, as seen by reduced tubular injury scores, lower renal gene expression levels (>75%) and renal deposition of kidney injury marker-1. In addition, anti-FB treatment significantly prevented renal macrophage influx and reduced systemic IL-6 levels compared to saline-treated rats after brain death. Lastly, renal gene expression of IL-6, MCP-1, and VCAM-1 were significantly reduced in rats treated with anti-FB. Conclusion: This study shows that donor pretreatment with anti-FB preserved renal function, reduced renal damage and inflammation prior to transplantation. Therefore, inhibition of factor B in organ donors might be a promising strategy to reduce brain death-induced renal injury and inflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Morte Encefálica , Fator B do Complemento/antagonistas & inibidores , Nefropatias/tratamento farmacológico , Animais , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Nefropatias/genética , Nefropatias/imunologia , Transplante de Rim , Masculino , Ratos Endogâmicos F344
5.
Front Immunol ; 10: 329, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873176

RESUMO

Over the last decade, striking progress has been made in the field of organ transplantation, such as better surgical expertise and preservation techniques. Therefore, organ transplantation is nowadays considered a successful treatment in end-stage diseases of various organs, e.g. the kidney, liver, intestine, heart, and lungs. However, there are still barriers which prevent a lifelong survival of the donor graft in the recipient. Activation of the immune system is an important limiting factor in the transplantation process. As part of this pro-inflammatory environment, the complement system is triggered. Complement activation plays a key role in the transplantation process, as highlighted by the amount of studies in ischemia-reperfusion injury (IRI) and rejection. However, new insight have shown that complement is not only activated in the later stages of transplantation, but already commences in the donor. In deceased donors, complement activation is associated with deteriorated quality of deceased donor organs. Of importance, since most donor organs are derived from either brain-dead donors or deceased after circulatory death donors. The exact mechanisms and the role of the complement system in the pathophysiology of the deceased donor have been underexposed. This review provides an overview of the current knowledge on complement activation in the (multi-)organ donor. Targeting the complement system might be a promising therapeutic strategy to improve the quality of various donor organs. Therefore, we will discuss the complement therapeutics that already have been tested in the donor. Finally, we question whether complement therapeutics should be translated to the clinics and if all organs share the same potential complement targets, considering the physiological differences of each organ.


Assuntos
Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/uso terapêutico , Transplante de Órgãos , Doadores de Tecidos , Animais , Ativação do Complemento , Humanos , Preservação de Órgãos , Transplante de Órgãos/métodos , Transplante de Órgãos/normas , Transplante de Órgãos/estatística & dados numéricos
6.
Transplantation ; 102(1): 79-87, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28731906

RESUMO

BACKGROUND: Kidneys derived from brain-dead (BD) donors have lower graft survival rates compared with kidneys from living donors. Complement activation plays an important role in brain death. The aim of our study was therefore to investigate the effect of C1-inhibitor (C1-INH) on BD-induced renal injury. METHODS: Brain death was induced in rats by inflating a subdurally placed balloon catheter. Thirty minutes after BD, rats were treated with saline, low-dose or high-dose C1-INH. Sham-operated rats served as controls. After 4 hours of brain death, renal function, injury, inflammation, and complement activation were assessed. RESULTS: High-dose C1-INH treatment of BD donors resulted in significantly lower renal gene expression and serum levels of IL-6. Treatment with C1-INH also improved renal function and reduced renal injury, reflected by the significantly lower kidney injury marker 1 gene expression and lower serum levels of lactate dehydrogenase and creatinine. Furthermore, C1-INH effectively reduced complement activation by brain death and significantly increased functional levels. However, C1-INH treatment did not prevent renal cellular influx. CONCLUSIONS: Targeting complement activation after the induction of brain death reduced renal inflammation and improved renal function before transplantation. Therefore, strategies targeting complement activation in human BD donors might clinically improve donor organ viability and renal allograft survival.


Assuntos
Morte Encefálica , Proteína Inibidora do Complemento C1/uso terapêutico , Nefropatias/prevenção & controle , Transplante de Rim , Animais , Ativação do Complemento/efeitos dos fármacos , Modelos Animais de Doenças , Interleucina-6/análise , Masculino , Ratos , Ratos Endogâmicos F344
7.
Mol Immunol ; 89: 22-35, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28558950

RESUMO

Renal transplantation is the treatment of choice for patients with end-stage renal disease. The vital role of the complement system in renal transplantation is widely recognized. This review discusses the role of complement in the different phases of renal transplantation: in the donor, during preservation, in reperfusion and at the time of rejection. Here we examine the current literature to determine the importance of both local and systemic complement production and how complement activation contributes to the pathogenesis of renal transplant injury. In addition, we dissect the complement pathways involved in the different phases of renal transplantation. We also review the therapeutic strategies that have been tested to inhibit complement during the kidney transplantation. Several clinical trials are currently underway to evaluate the therapeutic potential of complement inhibition for the treatment of brain death-induced renal injury, renal ischemia-reperfusion injury and acute rejection. We conclude that it is expected that in the near future, complement-targeted therapeutics will be used clinically in renal transplantation. This will hopefully result in improved renal graft function and increased graft survival.


Assuntos
Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Falência Renal Crônica/cirurgia , Transplante de Rim/métodos , Anticorpos Monoclonais Humanizados/uso terapêutico , Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/uso terapêutico , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/efeitos dos fármacos , Sobrevivência de Enxerto/imunologia , Humanos , Falência Renal Crônica/imunologia , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/tendências
8.
J Nucl Med ; 56(1): 50-5, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25476534

RESUMO

UNLABELLED: The estrogen receptor α (ERα) is expressed in approximately 70% of ovarian cancer tumors. PET of tumor ERα expression with the tracer 16α-(18)F-fluoro-17ß-estradiol ((18)F-FES) may be valuable to select ovarian cancer patients for endocrine therapy. The aim of this study was to evaluate the feasibility of (18)F-FES PET to determine tumor ERα expression noninvasively in epithelial ovarian cancer patients. METHODS: (18)F-FES PET/CT was performed shortly before cytoreductive surgery. Tumor (18)F-FES uptake was quantified for all lesions 10 mm or greater on CT and expressed as maximum standardized uptake value. (18)F-FES PET/CT findings were compared with histology and immunohistochemistry for ERα, ERß, and progesterone receptor. Receptor expression was scored semiquantitatively using H-scores (percentage of positive tumor cells × staining intensity). The optimum threshold to discriminate ER-positive and -negative lesions was determined by receiver-operating-characteristic analysis. RESULTS: In the 15 included patients with suspected ovarian cancer, 32 measurable lesions greater than 10 mm were present on CT. Tumor (18)F-FES uptake could be quantified for 28 lesions (88%), and 4 lesions were visible but nonquantifiable because of high uptake in adjacent tissue. During surgery, histology was obtained of 23 of 28 quantified lesions (82%). Quantitative (18)F-FES uptake correlated with the semiquantitative immunoscore for ERα (ρ = 0.65, P < 0.01) and weakly with progesterone receptor expression (ρ = 0.46, P = 0.03) and was not associated with ERß expression (ρ = 0.21, P = 0.33). The optimum threshold to discriminate ERα-positive and ERα-negative lesions was a maximum standardized uptake value greater than 1.8, which provided a 79% sensitivity, 100% specificity, and area under the curve of 0.86 (95% confidence interval, 0.70-1.00). In 2 of 7 patients with cytology/histology available at primary diagnosis and at debulking surgery, immunohistochemical ERα expression had changed over time. (18)F-FES PET was in accordance with histology at debulking surgery but not at primary diagnosis, indicating that (18)F-FES PET could provide reliable information about current tumor ERα status. CONCLUSION: (18)F-FES PET/CT can reliably assess ERα status in epithelial ovarian cancer tumors and metastases noninvasively. Evaluation of the predictive value of (18)F-FES PET/CT for endocrine therapy in epithelial ovarian cancer patients is warranted.


Assuntos
Estradiol/análogos & derivados , Regulação Neoplásica da Expressão Gênica , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Tomografia por Emissão de Pósitrons , Receptores de Estrogênio/metabolismo , Tomografia Computadorizada por Raios X , Idoso , Idoso de 80 Anos ou mais , Carcinoma Epitelial do Ovário , Estudos de Viabilidade , Feminino , Humanos , Pessoa de Meia-Idade , Imagem Multimodal , Neoplasias Epiteliais e Glandulares/sangue , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/patologia , Globulina de Ligação a Hormônio Sexual/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...