Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 633: 441-451, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29579655

RESUMO

Allergic diseases, including respiratory conditions of allergic rhinitis (hay fever) and asthma, affect up to 500 million people worldwide. Grass pollen are one major source of aeroallergens globally. Pollen forecast methods are generally site-based and rely on empirical meteorological relationships and/or the use of labour-intensive pollen collection traps that are restricted to sparse sampling locations. The spatial and temporal dynamics of the grass pollen sources themselves, however, have received less attention. Here we utilised a consistent set of MODIS satellite measures of grass cover and seasonal greenness (EVI) over five contrasting urban environments, located in Northern (France) and Southern Hemispheres (Australia), to evaluate their utility for predicting airborne grass pollen concentrations. Strongly seasonal and pronounced pollinating periods, synchronous with satellite measures of grass cover greenness, were found at the higher latitude temperate sites in France (46-50° N. Lat.), with peak pollen activity lagging peak greenness, on average by 2-3weeks. In contrast, the Australian sites (34-38° S. Lat.) displayed pollinating periods that were less synchronous with satellite greenness measures as peak pollen concentrations lagged peak greenness by as much as 4 to 7weeks. The Australian sites exhibited much higher spatial and inter-annual variations compared to the French sites and at the Sydney site, broader and multiple peaks in both pollen concentrations and greenness data coincided with flowering of more diverse grasses including subtropical species. Utilising generalised additive models (GAMs) we found the satellite greenness data of grass cover areas explained 80-90% of airborne grass pollen concentrations across the three French sites (p<0.001) and accounted for 34 to 76% of grass pollen variations over the two sites in Australia (p<0.05). Our results demonstrate the potential of satellite sensing to augment forecast models of grass pollen aerobiology as a tool to reduce the health and socioeconomic burden of pollen-sensitive allergic diseases.

2.
Aerobiologia (Bologna) ; 32(2): 289-302, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27069303

RESUMO

Although grass pollen is widely regarded as the major outdoor aeroallergen source in Australia and New Zealand (NZ), no assemblage of airborne pollen data for the region has been previously compiled. Grass pollen count data collected at 14 urban sites in Australia and NZ over periods ranging from 1 to 17 years were acquired, assembled and compared, revealing considerable spatiotemporal variability. Although direct comparison between these data is problematic due to methodological differences between monitoring sites, the following patterns are apparent. Grass pollen seasons tended to have more than one peak from tropics to latitudes of 37°S and single peaks at sites south of this latitude. A longer grass pollen season was therefore found at sites below 37°S, driven by later seasonal end dates for grass growth and flowering. Daily pollen counts increased with latitude; subtropical regions had seasons of both high intensity and long duration. At higher latitude sites, the single springtime grass pollen peak is potentially due to a cooler growing season and a predominance of pollen from C3 grasses. The multiple peaks at lower latitude sites may be due to a warmer season and the predominance of pollen from C4 grasses. Prevalence and duration of seasonal allergies may reflect the differing pollen seasons across Australia and NZ. It must be emphasized that these findings are tentative due to limitations in the available data, reinforcing the need to implement standardized pollen-monitoring methods across Australasia. Furthermore, spatiotemporal differences in grass pollen counts indicate that local, current, standardized pollen monitoring would assist with the management of pollen allergen exposure for patients at risk of allergic rhinitis and asthma.

3.
Aust N Z J Public Health ; 39(1): 51-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25648730

RESUMO

OBJECTIVE: Allergic rhinitis and allergic asthma are important chronic diseases posing serious public health issues in Australia with associated medical, economic, and societal burdens. Pollen are significant sources of clinically relevant outdoor aeroallergens, recognised as both a major trigger for, and cause of, allergic respiratory diseases. This study aimed to provide a national, and indeed international, perspective on the state of Australian pollen data using a large representative sample. METHODS: Atmospheric grass pollen concentration is examined over a number of years within the period 1995 to 2013 for Brisbane, Canberra, Darwin, Hobart, Melbourne, and Sydney, including determination of the 'clinical' grass pollen season and grass pollen peak. RESULTS: The results of this study describe, for the first time, a striking spatial and temporal variability in grass pollen seasons in Australia, with important implications for clinicians and public health professionals, and the Australian grass pollen-allergic community. CONCLUSIONS: These results demonstrate that static pollen calendars are of limited utility and in some cases misleading. This study also highlights significant deficiencies and limitations in the existing Australian pollen monitoring and data. IMPLICATIONS: Establishment of an Australian national pollen monitoring network would help facilitate advances in the clinical and public health management of the millions of Australians with asthma and allergic rhinitis.


Assuntos
Alérgenos/efeitos adversos , Exposição Ambiental , Poaceae/efeitos adversos , Pólen/efeitos adversos , Poluentes Atmosféricos/análise , Alérgenos/análise , Asma/etiologia , Austrália , Feminino , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Rinite Alérgica Sazonal/etiologia , Análise Espaço-Temporal
4.
PLoS One ; 9(5): e97925, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24874807

RESUMO

The composition and relative abundance of airborne pollen in urban areas of Australia and New Zealand are strongly influenced by geographical location, climate and land use. There is mounting evidence that the diversity and quality of airborne pollen is substantially modified by climate change and land-use yet there are insufficient data to project the future nature of these changes. Our study highlights the need for long-term aerobiological monitoring in Australian and New Zealand urban areas in a systematic, standardised, and sustained way, and provides a framework for targeting the most clinically significant taxa in terms of abundance, allergenic effects and public health burden.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Pólen , Saúde da População Urbana , Poluentes Atmosféricos/efeitos adversos , Alérgenos , Austrália , Clima , Geografia , Humanos , Nova Zelândia , Pólen/efeitos adversos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...