Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(27): 7500-7511, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449074

RESUMO

Zwitterionic materials have emerged as highly effective ultralow fouling materials for many applications, however the underlying mechanism of fouling resistance remains unclear. Using ab initio molecular dynamics simulations and surface-sensitive sum frequency generation vibrational spectroscopy, we studied the hydration behaviors of zwitterionic materials, including trimethylamine-N-oxide (TMAO) and carboxybetaines of different charge-separation distances, to understand their fouling-resistant mechanism and provide a design principle for improved performance. Our study reveals that the interplay among hydrogen bonding, net charge, and dipole moment is crucial to the fouling-resistant capabilities of zwitterionic materials. Shortening of the zwitterionic spacing strengthens hydrogen bonding with water against biomolecule attachment due to the increased electrostatic and induction interactions, charge transfer, and improved structural stability. Moreover, the shortened charge separation reduces the dipole moment of zwitterionic materials with an intrinsic near-neutral net charge, decreasing their electrostatic and dipole-dipole interactions with biofoulers, and increasing their resistance to fouling. Compared to carboxybetaine compounds, TMAO has the shortest zwitterionic spacing and exhibits the strongest hydrogen bonding, the smallest net charge, and the minimum dipole moment, making it an excellent nonfouling material.

2.
Langmuir ; 36(44): 13356-13363, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33124831

RESUMO

Understanding protein corona formation in an aqueous environment at the molecular and atomistic levels is critical to applications such as biomolecule-detection and drug delivery. In this work, we employed mesoscopic coarse-grained simulations to study ovispirin-1 and lysozyme protein coronas on bare gold nanoparticles. Our study showed that protein corona formation is governed by protein-surface and protein-protein interactions, as well as the surface hydrophobic effect. The corona structure was found to be dependent on protein types and the size of nanoparticles. Ovispirin proteins form homogeneous single-layered adsorption in comparison with the lysozyme's inhomogeneous multilayered aggregates on gold NP surfaces. The decrease in nanoparticle size leads to more angular degrees of freedom for protein adsorption orientation. Subsequent atomistic molecular dynamics simulations further demonstrate the loss of secondary structure of ovispirin upon adsorption and the heterogeneity of its local structure.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Coroa de Proteína , Adsorção , Ouro , Propriedades de Superfície
3.
Langmuir ; 36(26): 7658-7668, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32460500

RESUMO

Reverse osmosis through a polyamide (PA) membrane is an important technique for water desalination and purification. In this study, molecular dynamics simulations were performed to study the biofouling mechanism (i.e., protein adsorption) and nonequilibrium steady-state water transfer of a cross-linked PA membrane. Our results demonstrated that the PA membrane surface's roughness is a key factor of surface's biofouling, as the lysozyme protein adsorbed on the surface's cavity site displays extremely low surface diffusivity, blocking water passage, and decreasing water flux. The adsorbed protein undergoes secondary structural changes, particularly in the pressure-driven flowing conditions, leading to strong protein-surface interactions. Our simulations were able to present water permeation close to the experimental conditions with a pressure difference as low as 5 MPa, while all the electrolytes, which are tightly surrounded by hydration water, were effectively rejected at the membrane surfaces. The analysis of the self-intermediate scattering function demonstrates that the dynamics of water molecules coordinated with hydrogen bonds is faster inside the pores than during the translation across the pores. The pressure difference applied shows a negligible effect on the water structure and content inside the membrane but facilitates the transportation of hydrogen-bonded water molecules through the membrane's sub-nanopores with a reduced coordination number. The linear relationship between the water flux and the pressure difference demonstrates the applicability of continuum hydrodynamic principles and thus the stability of the membrane structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...