Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(36): 49529-49540, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33934259

RESUMO

In recent years, the occurrence of floods is one of the most important challenges facing in Hamadan city. In the absence/inefficiency of urban drainage systems, rainwater harvesting (RWH) systems as low-impact development (LID) methods can be considered as a measure to reduce the floods. In this study, three scenarios concerning the RWH from the roof surfaces are studied to evaluate the type of the harvested water on reducing flooding. In the first scenario, which indicates the current situation in the studied area, it is indicated that there is no harvest of the roof surfaces in the studied area. The second scenario is about the use of water harvested from the roof surfaces for household purposes. The third scenario also refers to the use of harvested water for irrigation of gardens. The simulation results of these three scenarios using the Soil Conservation Service (SCS) method in the Hydrologic Modeling System (HEC-HMS) model reveal that if the second scenario is implemented, the runoff volume decreases from 28 to 12% for the return period from 2 to 100 years. However, in the third scenario, this reduction in runoff volume will be 48 and 27% for return periods of 2 to 100 years, respectively. Therefore, the results of this study indicate that the use of harvested water can also affect the reduction on runoff volume.


Assuntos
Chuva , Água , Cidades , Inundações , Hidrologia , Movimentos da Água
2.
Sci Rep ; 9(1): 17420, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745189

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 9(1): 1464, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728418

RESUMO

Iran is experiencing unprecedented climate-related problems such as drying of lakes and rivers, dust storms, record-breaking temperatures, droughts, and floods. Here, we use the ensemble of five high-resolution climate models to project maximum and minimum temperatures and rainfall distribution, calculate occurrences of extreme temperatures (temperatures above and below the historical 95th and 5th percentiles, respectively), analyze compound of precipitation and temperature extremes, and determine flooding frequencies across the country. We found that compared to the period of 1980-2004, in the period of 2025-2049, Iran is likely to experience more extended periods of extreme maximum temperatures in the southern part of the country, more extended periods of dry (for ≥120 days: precipitation <2 mm, Tmax ≥30 °C) as well as wet (for ≤3 days: total precipitation ≥110 mm) conditions, and higher frequency of floods. Overall, the combination of these results projects a climate of extended dry periods interrupted by intermittent heavy rainfalls, which is a recipe for increasing the chances of floods. Without thoughtful adaptability measures, some parts of the country may face limited habitability in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...