Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982590

RESUMO

Photoluminescence intermittency remains one of the biggest challenges in realizing perovskite quantum dots (QDs) as scalable single photon emitters. We compare CsPbBr3 QDs capped with different ligands, lecithin, and a combination of oleic acid and oleylamine, to elucidate the role of surface chemistry on photoluminescence intermittency. We employ widefield photoluminescence microscopy to sample the blinking behavior of hundreds of QDs. Using change point analysis, we achieve the robust classification of blinking trajectories, and we analyze representative distributions from large numbers of QDs (Nlecithin = 1308, Noleic acid/oleylamine = 1317). We find that lecithin suppresses blinking in CsPbBr3 QDs compared with oleic acid/oleylamine. Under common experimental conditions, lecithin-capped QDs are 7.5 times more likely to be nonblinking and spend 2.5 times longer in their most emissive state, despite both QDs having nearly identical solution photoluminescence quantum yields. We measure photoluminescence as a function of dilution and show that the differences between lecithin and oleic acid/oleylamine capping emerge at low concentrations during preparation for single particle experiments. From experiment and first-principles calculations, we attribute the differences in lecithin and oleic acid/oleylamine performance to differences in their ligand binding equilibria. Consistent with our experimental data, density functional theory calculations suggest a stronger binding affinity of lecithin to the QD surface compared to oleic acid/oleylamine, implying a reduced likelihood of ligand desorption during dilution. These results suggest that using more tightly binding ligands is a necessity for surface passivation and, consequently, blinking reduction in perovskite QDs used for single particle and quantum light experiments.

2.
J Am Chem Soc ; 146(27): 18459-18469, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38934577

RESUMO

Coevaporation of formamidinium lead iodide (FAPbI3) is a promising route for the fabrication of highly efficient and scalable optoelectronic devices, such as perovskite solar cells. However, it poses experimental challenges in achieving stoichiometric FAPbI3 films with a cubic structure (α-FAPbI3). In this work, we show that undesired hexagonal phases of both PbI2 and FAPbI3 form during thermal evaporation, including the well-known 2H-FAPbI3, which are detrimental for optoelectronic performance. We demonstrate the growth of α-FAPbI3 at room temperature via thermal evaporation by depositing phosphonic acids (PAc) on substrates and subsequently coevaporating PbI2 and formamidinium iodide. We use density-functional theory to develop a theoretical model to understand the relative growth energetics of the α and 2H phases of FAPbI3 for different molecular interactions. Experiments and theory show that the presence of PAc molecules stabilizes the formation of α-FAPbI3 in thin films when excess molecules are available to migrate during growth. This migration of molecules facilitates the continued presence of adsorbed organic precursors at the free surface throughout the evaporation, which lowers the growth energy of the α-FAPbI3 phase. Our theoretical analyses of PAc molecule-molecule interactions show that ligands can form hydrogen bonding to reduce the migration rate of the molecules through the deposited film, limiting the effects on the crystal structure stabilization. Our results also show that the phase stabilization with molecules that migrate is long-lasting and resistant to moist air. These findings enable reliable formation and processing of α-FAPbI3 films via vapor deposition.

3.
Nat Commun ; 12(1): 3383, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099667

RESUMO

Formamidinium lead iodide perovskites are promising light-harvesting materials, yet stabilizing them under operating conditions without compromising optimal optoelectronic properties remains challenging. We report a multimodal host-guest complexation strategy to overcome this challenge using a crown ether, dibenzo-21-crown-7, which acts as a vehicle that assembles at the interface and delivers Cs+ ions into the interior while modulating the material. This provides a local gradient of doping at the nanoscale that assists in photoinduced charge separation while passivating surface and bulk defects, stabilizing the perovskite phase through a synergistic effect of the host, guest, and host-guest complex. The resulting solar cells show power conversion efficiencies exceeding 24% and enhanced operational stability, maintaining over 95% of their performance without encapsulation for 500 h under continuous operation. Moreover, the host contributes to binding lead ions, reducing their environmental impact. This supramolecular strategy illustrates the broad implications of host-guest chemistry in photovoltaics.

4.
J Am Chem Soc ; 143(3): 1529-1538, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33442979

RESUMO

The use of layered perovskites is an important strategy to improve the stability of hybrid perovskite materials and their optoelectronic devices. However, tailoring their properties requires accurate structure determination at the atomic scale, which is a challenge for conventional diffraction-based techniques. We demonstrate the use of nuclear magnetic resonance (NMR) crystallography in determining the structure of layered hybrid perovskites for a mixed-spacer model composed of 2-phenylethylammonium (PEA+) and 2-(perfluorophenyl)ethylammonium (FEA+) moieties, revealing nanoscale phase segregation. Moreover, we illustrate the application of this structure in perovskite solar cells with power conversion efficiencies that exceed 21%, accompanied by enhanced operational stability.

5.
J Am Chem Soc ; 142(47): 19980-19991, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170007

RESUMO

The use of molecular modulators to reduce the defect density at the surface and grain boundaries of perovskite materials has been demonstrated to be an effective approach to enhance the photovoltaic performance and device stability of perovskite solar cells. Herein, we employ crown ethers to modulate perovskite films, affording passivation of undercoordinated surface defects. This interaction has been elucidated by solid-state nuclear magnetic resonance and density functional theory calculations. The crown ether hosts induce the formation of host-guest complexes on the surface of the perovskite films, which reduces the concentration of surface electronic defects and suppresses nonradiative recombination by 40%, while minimizing moisture permeation. As a result, we achieved substantially improved photovoltaic performance with power conversion efficiencies exceeding 23%, accompanied by enhanced stability under ambient and operational conditions. This work opens a new avenue to improve the performance and stability of perovskite-based optoelectronic devices through supramolecular chemistry.

6.
J Am Chem Soc ; 141(44): 17659-17669, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31593456

RESUMO

Chemical doping of inorganic-organic hybrid perovskites is an effective way of improving the performance and operational stability of perovskite solar cells (PSCs). Here we use 5-ammonium valeric acid iodide (AVAI) to chemically stabilize the structure of α-FAPbI3. Using solid-state MAS NMR, we demonstrate the atomic-level interaction between the molecular modulator and the perovskite lattice and propose a structural model of the stabilized three-dimensional structure, further aided by density functional theory (DFT) calculations. We find that one-step deposition of the perovskite in the presence of AVAI produces highly crystalline films with large, micrometer-sized grains and enhanced charge-carrier lifetimes, as probed by transient absorption spectroscopy. As a result, we achieve greatly enhanced solar cell performance for the optimized AVA-based devices with a maximum power conversion efficiency (PCE) of 18.94%. The devices retain 90% of the initial efficiency after 300 h under continuous white light illumination and maximum-power point-tracking measurement.

7.
J Phys Chem Lett ; 10(13): 3543-3549, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31194558

RESUMO

5-Ammonium valeric acid (AVA) is a frequently used additive in the preparation of lead halide perovskites. However, its microscopic role as passivating, cross-linking, or templating agent is far from clear. In this work, we provide density functional theory-based structural models for the Ruddlesden-Popper (RP) phases of AVA2(CH3NH3) n-1Pb nI3 n+1 for n = 1, 2, and 3 and validate with experimental data on polycrystalline samples for n = 1. The structural and electronic properties of the AVA-based RP phases are compared to the ones of other linker families. In contrast to aromatic and aliphatic spacers without additional functional groups, the RP phases of AVA are characterized by the formation of a regular and stable H-bonding network between the carbonyl head groups of adjacent AVA molecules in opposite layers. Because of these additional interactions, the penetration depth of the organic layer into the perovskite sheet is reduced with direct consequences for its crystalline phase. The possibility of forming strong interlinker hydrogen bonds may lead to an enhanced thermal stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...