Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 19(5)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38953496

RESUMO

Colon cancer (CC) is one of the most prevalent cancers in the world, and chemotherapy is widely applied to combat it. However, chemotherapy drugs have severe side effects and emergence of multi drug resistance (MDR) is common. This bottleneck can be overcome by niosome nanocarriers that minimize drug dose/toxicity meanwhile allow co-loading of incompatible drugs for combination therapy. In this research, silibinin (Sil) as a hydrophobic drug was loaded into the lipophilic part, and methotrexate (MTX) into the hydrophilic part of niosome by the thin film hydration (TFH) method to form Nio@MS NPs for CT26 colon cancer therapyin vitro. Our results indicated synthesis of ideal niosome nanoparticles (NPs) with spherical morphology, size of ∼100 nm, and a zeta potential of -10 mV. The IC50value for Nio@MS was determined ∼2.6 µg ml-1, which was significantly lower than MTX-Sil (∼6.86 µg ml-1), Sil (18.46 µg ml-1), and MTX (9.8 µg ml-1). Further, Nio@MS significantly reduced cell adhesion density, promoted apoptosis and increased gene expression level of caspase 3 and BAX while promoted significant downregulation of BCL2. In conclusion, the design and application of niosome to co-administer Sil and MTX can increase the drugs cytotoxicity, reduce their dose and improve anti-cancer potential by combating MDR.


Assuntos
Apoptose , Neoplasias do Colo , Metotrexato , Silibina , Metotrexato/química , Metotrexato/farmacologia , Silibina/farmacologia , Silibina/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Níquel/química , Lipossomos/química , Humanos , Animais , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos , Portadores de Fármacos/química
2.
Heliyon ; 10(11): e32228, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961950

RESUMO

In this research, an innovative protocol is introduced to address crucial deficiencies in the formulation of chitosan nanoparticles (Cs NPs). While NPs show potential in drug delivery systems (DDSs), their application in the clinic is hindered by various drawbacks, such as toxicity, high material costs, and time-consuming and challenging preparation procedures. Within polymer-based NPs, Cs is a plentiful natural substance derived from the deacetylation of chitin, which can be sourced from the shells of shrimp or crab. Cs NPs can be formulated using the ionic gelation technique, which involves the use of a negatively charged agent, such as tripolyphosphate (TPP), as a crosslinking agent. Even though Cs is a cost-effective and biocompatible material, the formulation of Cs NPs with the correct size and surface electrical charge (zeta potential) presents a persistent challenge. In this study, various techniques were employed to analyze the prepared Cs NPs. The size and surface charge of the NPs were evaluated using dynamic light scattering (DLS). Morphological analysis was conducted using field emission-scanning electron microscopy (FE-SEM). The chemical composition and formation of Cs NPs were investigated using Fourier transform infrared (FTIR). The stability analysis was confirmed through X-ray diffraction (XRD) analysis. Lastly, the biocompatibility of the NPs was assessed through cell cytotoxicity evaluation using the MTT assay. Moreover, here, 11 formulations with different parameters such as reaction pH, Cs:TPP ratio, type of Cs/TPP, and ultrasonication procedure were prepared. Formulation 11 was chosen as the optimized formulation based on its high stability of more than three months, biocompatibility, nanosize of 75.6 ± 18.24 nm, and zeta potential of +26.7 mV. To conclude, the method described here is easy and reproducible and can be used for facile preparation of Cs NPs with desirable physicochemical characteristics and engineering ideal platforms for drug delivery purposes.

3.
Heliyon ; 10(11): e32183, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38873686

RESUMO

A novel thermal-responsive ß-cyclodextrin-based magnetic hydrogel [ß-cyclodextrin-graft-poly(N-isopropylacrylamide)/Fe3O4 (ß-CD-g-PNIPAAm/Fe3O4)] was fabricated as a novel nanomedicine for chemo/hyperthermia treatment of cancer cells. Firstly, ß-CD was modified by maleic anhydride (MA) followed by copolymerization with NIPAAm monomer and thiol-end capped Fe3O4 nanoparticles (NPs) in the presence of a crosslinker through acrylamide-thiol polymerization system to afford a magnetic hydrogel. The saturation magnetization (δ s) value for developed hydrogel was determined to be 8.2 emu g-1. The hydrogel was physically loaded with an anticancer agent, doxorubicin hydrochloride (Dox). The encapsulation efficiency (EE) of drug into the hydrogel was obtained as 73 %. The system represented acceptable thermal-triggered drug release behavior that best fitted with Higuchi model, demonstrating the release of drug is mostly controlled by diffusion mechanism. The anticancer performance of the ß-CD-g-PNIPAAm/Fe3O4-Dox was evaluated using MCF7 cells by MTT-assay. In addition, flow cytometry analyses showed considerable cellular uptake of Dox in the cells treated with ß-CD-g-PNIPAAm/Fe3O4-Dox (∼70 %) compared to free Dox (∼28 %). As results, in time period of 48 h by combination of chemo- and hyperthermia-therapies, the developed system displayed greater anticancer efficiency than the free Dox.

4.
Int J Biol Macromol ; 272(Pt 2): 132940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848845

RESUMO

This study reports on the design and synthesis of hypoxia responsive nanoparticles (HRNPs) composed of methoxy polyethylene glycol-4,4 dicarboxylic azolinker-chitosan (mPEG-Azo-chitosan) as ideal drug delivery platform for Fingolimod (FTY720, F) delivery to achieve selective and highly enhanced TNBC therapy in vivo. Herein, HRNPs with an average size of 49.86 nm and a zeta potential of +3.22 mV were synthetized, which after PEG shedding can shift into a more positively-charged NPs (+30.3 mV), possessing self-activation ability under hypoxia situation in vitro, 2D and 3D culture. Treatment with lower doses of HRNPs@F significantly reduced MDA-MB-231 microtumor size to 15 %, induced apoptosis by 88 % within 72 h and reduced highly-proliferative 4 T1 tumor weight by 87.66 % vs. ∼30 % for Fingolimod compared to the untreated controls. To the best of our knowledge, this is the first record for development of hypoxia-responsive chitosan-based NPs with desirable physicochemical properties, and selective self-activation potential to generate highly-charged nanosized tumor-penetrating chitosan NPs. This formulation is capable of localized delivery of Fingolimod to the tumor core, minimizing its side effects while boosting its anti-tumor potential for eradication of TNBC solid tumors.


Assuntos
Quitosana , Cloridrato de Fingolimode , Nanopartículas , Quitosana/química , Quitosana/análogos & derivados , Nanopartículas/química , Humanos , Animais , Linhagem Celular Tumoral , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/administração & dosagem , Camundongos , Feminino , Portadores de Fármacos/química , Apoptose/efeitos dos fármacos , Polietilenoglicóis/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
5.
Biomed Pharmacother ; 177: 116951, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901207

RESUMO

The emerging strategy of biomimetic nanoparticles (NPs) via cellular membrane camouflage holds great promise in cancer therapy. This scholarly review explores the utilization of cellular membranes derived from diverse cellular entities; blood cells, immune cells, cancer cells, stem cells, and bacterial cells as examples of NP coatings. The camouflaging strategy endows NPs with nuanced tumor-targeting abilities such as self-recognition, homotypic targeting, and long-lasting circulation, thus also improving tumor therapy efficacy overall. The comprehensive examination encompasses a variety of cell membrane camouflaged NPs (CMCNPs), elucidating their underlying targeted therapy mechanisms and delineating diverse strategies for anti-cancer applications. Furthermore, the review systematically presents the synthesis of source materials and methodologies employed in order to construct and characterize these CMCNPs, with a specific emphasis on their use in cancer treatment.

6.
Cancer Cell Int ; 24(1): 135, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627732

RESUMO

One of the contributing factors in the diagnosis and treatment of most cancers is the identification of their surface antigens. Cancer tissues or cells have their specific antigens. Some antigens that are present in many cancers elicit different functions. One of these antigens is the prostate stem cell antigen (PSCA) antigen, which was first identified in the prostate. PSCA is a cell surface protein that has different functions in different tissues. It can play an inhibitory role in cell proliferation as well as a tumor-inducing role. PSCA has several genetic variants involved in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship with clinical features can provide more information on diagnosis and treatment of patients with cancers. Most studies on the PSCA have focused on prostate cancer. While it is also expressed in other cancers, little attention has been paid to its role as a valuable diagnostic, prognostic, and therapeutic tool in other cancers. PSCA has several genetic variants that seem to play a significant role in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship and variants with clinical features can be beneficial in concomitant cancer therapy and diagnosis, as theranostic tools. In this study, we will review the alteration of the PSCA expression and its polymorphisms and evaluate its clinical and theranostics significance in various cancers.

7.
ACS Omega ; 9(9): 10875-10885, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463340

RESUMO

Chemotherapy is widely used for cancer therapy; however, its efficacy is limited due to poor targeting specificity and severe side effects. Currently, the next generations of delivery systems with multitasking potential have attracted significant attention for cancer therapy. This study reports on the design and synthesis of a multifunctional nanoplatform based on niosomes (NIO) coloaded with paclitaxel (PTX), a chemotherapeutic drug commonly used to treat breast cancer, and sodium oxamate (SO), a glycolytic inhibitor to enhance the cytotoxicity of anticancer drug, along with quantum dots (QD) as bioimaging agents, and hyaluronic acid (HA) coating for active targeting. HN@QPS nanoparticles with a size of ∼150 nm and a surface charge of -39.9 mV with more than 90% EE for PTX were synthesized. Codelivery of SO with PTX remarkably boosted the anticancer effects of PTX, achieving IC50 values of 1-5 and >0.5 ppm for HN@QP and HN@QPS, respectively. Further, HN@QPS treatment enhanced the apoptosis rate by more than 70% in MCF-7 breast cancer cells without significant cytotoxicity on HHF-2 normal cells. Also, quantification of mitochondrial fluorescence showed efficient toxicity against MCF-7 cells. Moreover, the cellular uptake evaluation demonstrated an improved uptake of HN@Q in MCF-7 cells. Taken together, this preliminary research indicated the potential of HN@QPS as an efficient targeted-dual drug delivery nanotheranostic against breast cancer cells.

8.
Pathol Res Pract ; 254: 155083, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277749

RESUMO

Small extracellular vesicles called exosomes play a crucial part in promoting intercellular communication. They act as intermediaries for the exchange of bioactive chemicals between cells, released into the extracellular milieu by a variety of cell types. Within the context of cancer progression, metastasis is a complex process that plays a significant role in the spread of malignant cells from their main site of origin to distant anatomical locations. This complex process plays a key role in the domain of cancer-related deaths. In summary, the trajectory of current research in the field of exosome-mediated metastasis is characterized by its unrelenting quest for more profound understanding of the molecular nuances, the development of innovative diagnostic tools and therapeutic approaches, and the unwavering dedication to transforming these discoveries into revolutionary clinical applications. This unrelenting pursuit represents a shared desire to improve the prognosis for individuals suffering from metastatic cancer and to nudge the treatment paradigm in the direction of more effective and customized interventions.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Exossomos/metabolismo , Neoplasias/patologia , Vesículas Extracelulares/metabolismo , Comunicação Celular , Biologia Molecular , Microambiente Tumoral
9.
Mol Cell Biochem ; 479(3): 679-691, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37166542

RESUMO

Extracellular vesicles (EVs) secreted by various cells offer great potential for use in the diagnosis and treatment of disease. EVs are heterogeneous membranous vesicles. Exosomes are a subtype of EVs, 40-150 nm spherical vesicles with a lipid layer derived from endosomes. Exosomes, which are involved in signal transduction and maintain homeostasis, are released from almost all cells, tissues, and body fluids. Although several methods exist to isolate and characterize EVs and exosomes, each technique has significant drawbacks and limitations that prevent progress in the field. New approaches in the biology of EVs show great potential for isolating and characterizing EVs, which will help us better understand their biological function. The strengths and limitations of conventional strategies and novel methods (microfluidic) for EV isolation are outlined in this review. We also present various exosome isolation techniques and kits that are commercially available and assess the global market demand for exosome assays.


Assuntos
Exossomos , Vesículas Extracelulares , Transdução de Sinais , Endossomos
10.
Int J Biol Macromol ; 253(Pt 6): 127214, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37797855

RESUMO

A novel strategy was designed and developed based of horseradish peroxidase (HRP)-mediated crosslinking of tyramine-functionalized starch (Tyr-St), tannic acid (TA) and phenolated-magnetic nanoparticles (Fe3O4-PhOH NPs), and simultaneous loading of doxorubicin hydrochloride (Dox) to afford a pH-responsive magnetic hydrogel-based drug delivery system (DDS) for synergistic in vitro chemo/hyperthermia therapy of human breast cancer (MCF-7) cells. The developed St-g-PTA/Fe3O4 magnetic hydrogel showed porous micro-structure with saturation magnetization (δs) value of 19.2 emu g-1 for Fe3O4 NPs content of ∼7.4 wt%. The pore sizes of the St-g-PTA/Fe3O4 hydrogel was calculated to be 2400 ± 200 nm-2. In vitro drug release experiments exhibited the developed DDS has pH-dependent drug release behavior, while at physiological pH (7.4) released only 30 % of the loaded drug after 100 h. Human serum albumin (HSA) adsorption capacities of the synthesized St/Fe3O4 and St-g-PTA/Fe3O4 magnetic hydrogels were obtained as 86 ± 2.2 and 77 ± 1.9 µgmg-1, respectively. The well-known MTT-assay approved the cytocompatibility of the developed St-g-PTA/Fe3O4 hydrogel, while the Dox-loaded system exhibited higher anti-cancer activity than those of the free Dox as verified by MTT-assay, and optical as well as florescent microscopies imaging. The synergistic chemo/hyperthermia therapy effect was also verified for the developed St-g-PTA/Fe3O4-Dox via hot water approach.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Hidrogéis , Amido , Doxorrubicina/química , Hipertermia Induzida/métodos , Fenômenos Magnéticos , Liberação Controlada de Fármacos
12.
J Control Release ; 363: 57-83, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37739017

RESUMO

There is increasing evidence that malignant tumors are initiated and maintained by a sub-population of tumor cells that have similar biological properties to normal adult stem cells. This very small population of Cancer Stem Cells (CSC) comprises tumor initiating cells responsible for cancer recurrence, drug resistance and metastasis. Conventional treatments such as chemotherapy, radiotherapy and surgery, in addition to being potentially toxic and non-specific, may paradoxically increase the population, spread and survival of CSCs. Next-generation sequencing and omics technologies are increasing our understanding of the pathways and factors involved in the development of CSCs, and can help to discover new therapeutic targets against CSCs. In addition, recent advances in nanomedicine have provided hope for the development of optimal specific therapies to eradicate CSCs. Moreover, the use of artificial intelligence and nano-informatics can elucidate new drug targets, and help to design drugs and nanoparticles (NPs) to deal with CSCs. In this review, we first summarize the properties of CSCs and describe the signaling pathways and molecular characteristics responsible for the emergence and survival of CSCs. Also, the location of CSCs within the tumor and the effect of host factors on the creation and maintenance of CSCs are discussed. Newly discovered molecular targets involved in cancer stemness and some novel therapeutic compounds to combat CSCs are highlighted. The optimum properties of anti-CSC NPs, including blood circulation and stability, tumor accumulation and penetration, cellular internalization, drug release, endosomal escape, and aptamers designed for specific targeting of CSCs are covered. Finally, some recent smart NPs designed for therapeutic and theranostic purposes to overcome CSCs are discussed.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos , Inteligência Artificial , Neoplasias/metabolismo , Células-Tronco Neoplásicas
14.
Int J Biol Macromol ; 249: 125991, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37499719

RESUMO

Novel electrically conductive nanofibrous scaffolds were designed and fabricated through the grafting of aniline monomer onto a phenylamine-functionalized alginate (Alg-NH2) followed by electrospinning with poly(vinyl alcohol) (PVA). Performance of the prepared scaffolds in bone tissue engineering (TE) were studied in terms of physicochemical (e.g., conductivity, electroactivity, morphology, hydrophilicity, water uptake, and mechanical) and biological (cytocompatibility, in vitro biodegradability, cells attachment and proliferation, hemolysis, and protein adsorption) properties. The contact angles of the scaffolds with water drop were obtained about 50 to 60° that confirmed their excellent hydrophilicities for TE applications. Three dimensional (3D), inter-connected and uniform porous structures of the scaffolds without any bead formation was confirmed by scanning electron microscopy (SEM). Electrical conductivities of the fabricated scaffolds were obtained as 1.5 × 10-3 and 2.7 × 10-3 Scm-1. MTT assay results revealed that the scaffolds have acceptable cytocompatibilities and can enhance the cells adhesion as well as proliferation, which approved their potential for TE applications. Hemolysis rate of the developed scaffolds were quantified <2 % even at high concentration (200 µgmL-1) of samples that approved their hemocompatibilities. The scaffolds were also exhibited acceptable protein adsorption capacities (65 and 68 µgmg-1). As numerous experimental results, the developed scaffolds have acceptable potential for bone TE.


Assuntos
Nanofibras , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Nanofibras/química , Alginatos , Biomimética , Hemólise , Água , Proliferação de Células
15.
Mater Today Bio ; 20: 100672, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37273793

RESUMO

Over the past three decades, nanoscience has offered a unique solution for reducing the systemic toxicity of chemotherapy drugs and for increasing drug therapeutic efficiency. However, the poor accumulation and pharmacokinetics of nanoparticles are some of the key reasons for their slow translation into the clinic. The is intimately linked to the non-biological nature of nanoparticles and the aberrant features of solid cancer, which together significantly compromise nanoparticle delivery. New findings on the unique properties of tumors and their interactions with nanoparticles and the human body suggest that, contrary to what was long-believed, tumor features may be more mirage than miracle, as the enhanced permeability and retention based efficacy is estimated to be as low as 1%. In this review, we highlight the current barriers and available solutions to pave the way for approved nanoformulations. Furthermore, we aim to discuss the main solutions to solve inefficient drug delivery with the use of nanobioengineering of nanocarriers and the tumor environment. Finally, we will discuss the suggested strategies to overcome two or more biological barriers with one nanocarrier. The variety of design formats, applications and implications of each of these methods will also be evaluated.

16.
J Control Release ; 353: 1002-1022, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516901

RESUMO

Hypoxia is a unique characteristic of the solid tumor microenvironment. Hypoxia contributes to multi-drug resistance, metastasis and cancer relapse through numerous molecular pathways, but at the same time provides an opportunity for the development of novel drugs or modalities specifically targeting hypoxic tumor regions. Given the high significance of tumor hypoxia in therapeutic results, we here discuss a variety of hypoxia-adopted strategies, and their potential and utility in the treatment of deep-seated hypoxic tumor cells. We discuss the merits and demerits of these approaches, as well as their combination with other approaches such as photodynamic therapy. We also survey the currently available 3D hypoxia modeling systems, in particular organoid-based microfluidics. Finally, we discuss the potential and the current status of preclinical tumor hypoxia approaches in clinical trials for advanced cancer. We believe that multi-modal imaging and therapeutic hypoxia adopted drug delivery platforms could provide better efficacy and safety profiles, and more importantly personalized therapy. Determining the hypoxia status of tumors could offer a second chance for the clinical translation of hypoxia-based agents, such as hypoxia activated prodrugs (HAPs) from bench to bedside.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Sistemas de Liberação de Medicamentos , Pró-Fármacos/uso terapêutico , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Hipóxia Celular , Microambiente Tumoral
17.
Front Oncol ; 12: 1054029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531004

RESUMO

Chitosan and its derivatives are among biomaterials with numerous medical applications, especially in cancer. Chitosan is amenable to forming innumerable shapes such as micelles, niosomes, hydrogels, nanoparticles, and scaffolds, among others. Chitosan derivatives can also bring unprecedented potential to cross numerous biological barriers. Combined with other biomaterials, hybrid and multitasking chitosan-based systems can be realized for many applications. These include controlled drug release, targeted drug delivery, post-surgery implants (immunovaccines), theranostics, biosensing of tumor-derived circulating materials, multimodal systems, and combination therapy platforms with the potential to eliminate bulk tumors as well as lingering tumor cells to treat minimal residual disease (MRD) and recurrent cancer. We first introduce different formats, derivatives, and properties of chitosan. Next, given the barriers to therapeutic efficacy in solid tumors, we review advanced formulations of chitosan modules as efficient drug delivery systems to overcome tumor heterogeneity, multi-drug resistance, MRD, and metastasis. Finally, we discuss chitosan NPs for clinical translation and treatment of recurrent cancer and their future perspective.

19.
Adv Pharm Bull ; 12(1): 58-76, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35517891

RESUMO

Antibiotic resistance is one of the serious health-threatening issues globally, the control of which is indispensable for rapid diagnosis and treatment because of the high prevalence and risks of pathogenicity. Traditional and molecular techniques are relatively expensive, complex, and non-portable, requiring facilities, trained personnel, and high-tech laboratories. Widespread and timely-detection is vital to the better crisis management of rapidly spreading infective diseases, especially in low-tech regions and resource-limited settings. Hence, the need for inexpensive, fast, simple, mobile, and accessible point-of-care (POC) diagnostics is highly demanding. Among different biosensing methods, the isothermal amplification of nucleic acids is favorite due to their simplicity, high sensitivity/specificity, rapidity, and portability, all because they require a constant temperature to work. Isothermal amplification methods are utilized for detecting various targets, including DNA, RNA, cells, proteins, small molecules, ions, and viruses. In this paper, we discuss various platforms, applications, and potentials of isothermal amplification techniques for biosensing of antimicrobial resistance. We also evaluate the potential of these methods, coupled with the novel and rapidly-evolving platforms offered by nanotechnology and microfluidic devices.

20.
Cancer Cell Int ; 22(1): 196, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590367

RESUMO

Colorectal cancer (CRC) is one of the deadliest cancers in the world, the incidences and morality rate are rising and poses an important threat to the public health. It is known that multiple drug resistance (MDR) is one of the major obstacles in CRC treatment. Tumor microenvironment plus genomic instability, tumor derived exosomes (TDE), cancer stem cells (CSCs), circulating tumor cells (CTCs), cell-free DNA (cfDNA), as well as cellular signaling pathways are important issues regarding resistance. Since non-targeted therapy causes toxicity, diverse side effects, and undesired efficacy, targeted therapy with contribution of various carriers has been developed to address the mentioned shortcomings. In this paper the underlying causes of MDR and then various targeting strategies including exosomes, liposomes, hydrogels, cell-based carriers and theranostics which are utilized to overcome therapeutic resistance will be described. We also discuss implication of emerging approaches involving single cell approaches and computer-aided drug delivery with high potential for meeting CRC medical needs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...