Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int. microbiol ; 26(4): 939-949, Nov. 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-227483

RESUMO

Recently, many efforts have been made to treat cancer using recombinant bacterial toxins and this strategy has been used in clinical trials of various cancers. Therapeutic DNA cancer vaccines are now considered as a promising strategy to activate the immune system against cancer. Cancer vaccines could induce specific and long-lasting immune responses against tumors. This study aimed to evaluate the antitumor potency of the SEB DNA vaccine as a new antitumor candidate against breast tumors in vivo. To determine the effect of the SEB construct on inhibiting tumor cell growth in vivo, the synthetic SEB gene, subsequent codon optimization, and embedding the cleavage sites were sub-cloned to an expression vector. Then, SEB construct, SEB, and PBS were injected into the mice. After being vaccinated, 4T1 cancer cells were injected subcutaneously into the right flank of mice. Then, the cytokine levels of IL-4 and IFN-γ were estimated by the ELISA method to evaluate the antitumor activity. The spleen lymphocyte proliferation, tumor size, and survival time were assessed. The concentration of IFN-γ in the SEB-Vac group showed a significant increase compared to other groups. The production of IL-4 in the group that received the DNA vaccine did not change significantly compared to the control group. The lymphocyte proliferation increased significantly in the mice group that received SEB construct than PBS control group (p < 0.001). While there was a meaningful decrease in tumor size (p < 0.001), a significant increase in tumor tissue necrosis (p < 0.01) and also in survival time of the animal model receiving the recombinant construct was observed.(AU)


Assuntos
Animais , Camundongos , Vacinas Anticâncer/genética , Interleucina-4 , Camundongos Endogâmicos BALB C , Necrose , Vacinas/genética , Enterotoxinas , Neoplasias , Técnicas Microbiológicas
2.
Biomed Pharmacother ; 167: 115583, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774673

RESUMO

Acinetobacter baumannii is a formidable pathogen, characterized by high mortality rates and pan-drug-resistant strains. Current commercial antibiotics lack efficacy against drug-resistant variants, necessitating the search for alternative treatments. This study investigates the potential of egg yolk immunoglobulin (IgY) as a cost-effective biomolecule for passive protection against A. baumannii pneumonia. FimA (ABAYE2132), a key virulence factor involved in biofilm development and lung cell adherence, emerges as a promising antigen for triggering protective IgY production. Recombinant FimA was expressed, purified, and used for intramuscular immunization of laying White Leghorn hens. IgY antibodies were subsequently extracted from egg yolks, with their reactivity assessed through indirect ELISA. Neutropenic mice received intranasal administration of IgYs one hour prior to the challenge with a clinical A. baumannii isolate (10 ×LD50). The specific anti-FimA IgYs detected recombinant FimA and provided 100% protection against bacterial infection, while non-specific IgYs prolonged survival for up to 72 h. In contrast, control mice succumbed to infection within 24 h. Analysis of bacterial loads in lungs and spleens after 16 h reveals the following order: control > non-specific IgY > anti-FimA IgY. These findings highlight FimA as a suitable antigen for the development of protective IgYs against A. baumannii.

3.
Immunol Lett ; 262: 18-26, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652189

RESUMO

BACKGROUND: The rise of multi-drug resistant Acinetobacter baumannii poses a grave threat to hospital settings, resulting in increased mortality rates and garnering global attention. The formation of biofilms facilitated by biofilm-associated protein (Bap) and the iron absorption capabilities mediated by Baumannii acinetobactin utilization A (BauA) contribute to the persistence and survival of multidrug-resistant strains. In this study, we aimed to investigate the potential of disrupting the function of BauA and Bap simultaneously as a strategy for controlling A. baumannii. METHODS: Recombinant Bap and BauA were expressed, purified, and subcutaneously administered individually and in combination to BALB/c mice. Subsequently, mice were intraperitoneally challenged with A. baumannii, and the bacterial load and tissue damage in the spleen, lung, and liver were assessed. Serum samples were evaluated to determine antibody titers in surviving mice. RESULTS: Specific IgG antibodies were significantly increased. A combination of the antigens resulted in enhanced titer of specific IgGs in comparison to either BauA or Bap alone. The antibodies remained stable over a seven-month period. The combination of Bap and BauA exhibited superior immunoprotection against A. baumannii infection compared to individual administration, resulting in a further reduction in bacterial load in the liver, spleen, and lungs. The histopathological analysis demonstrated successful protection of the tissues against A. baumannii-induced damage upon administration of the two immunogens. CONCLUSIONS: The combination of Bap and BauA has the potential to target a broader range of A. baumannii strains, including those expressing either Bap or BauA, thereby increasing its efficacy against a diverse array of strains.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Animais , Camundongos , Modelos Animais de Doenças , Anticorpos , Biofilmes , Camundongos Endogâmicos BALB C
4.
Microb Pathog ; 182: 106262, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37474079

RESUMO

PURPOSE: Due to its high drug resistance, Acinetobacter baumannii is a priority for new therapeutic measures like vaccines. In this study, the protectivity of a combination cocktail of Omp34 and BauA as a vaccine against A. baumannii was studied in a murine sepsis model. METHODS: The antibody titers were raised to Omp34 and BauA in BALB/c mice and assessed by indirect ELISA. The immunized mice were challenged with A. baumannii ATCC 19606. The bacterial loads in the liver, spleen, and lungs were also determined. RESULTS: A significant increase in survival of the immunized mice was noted. In active immunity, the survival rates in mice receiving Omp34 and BauA alone or in combination were 100%. A significant decrease in the bacterial load was observed in the spleens, livers, and lungs of vaccinated mice. Anti-BauA and anti-Omp34 sera crossly detected Omp34 and BauA respectively. The decrease in bacterial load in body organs of mice vaccinated with a combination of the two proteins was significantly higher than those of the single proteins in both actively and passively immunized mice. In passive immunity, the survival rate of mice receiving specific sera raised to the combination of these proteins was 85.7%. CONCLUSION: Higher protection by a combination of Omp34 and BauA than Omp34 or BauA could be attributed to targeting simultaneously both surface antigens indicating the synergistic effect of Omp34 and BauA as suitable vaccine candidates in the prevention or treatment of A. baumannii infections.


Assuntos
Acinetobacter baumannii , Vacinas , Animais , Camundongos , Proteínas da Membrana Bacteriana Externa , Pulmão , Imunidade , Vacinas Bacterianas
6.
Int Microbiol ; 26(4): 939-949, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36991248

RESUMO

Recently, many efforts have been made to treat cancer using recombinant bacterial toxins and this strategy has been used in clinical trials of various cancers. Therapeutic DNA cancer vaccines are now considered as a promising strategy to activate the immune system against cancer. Cancer vaccines could induce specific and long-lasting immune responses against tumors. This study aimed to evaluate the antitumor potency of the SEB DNA vaccine as a new antitumor candidate against breast tumors in vivo. To determine the effect of the SEB construct on inhibiting tumor cell growth in vivo, the synthetic SEB gene, subsequent codon optimization, and embedding the cleavage sites were sub-cloned to an expression vector. Then, SEB construct, SEB, and PBS were injected into the mice. After being vaccinated, 4T1 cancer cells were injected subcutaneously into the right flank of mice. Then, the cytokine levels of IL-4 and IFN-γ were estimated by the ELISA method to evaluate the antitumor activity. The spleen lymphocyte proliferation, tumor size, and survival time were assessed. The concentration of IFN-γ in the SEB-Vac group showed a significant increase compared to other groups. The production of IL-4 in the group that received the DNA vaccine did not change significantly compared to the control group. The lymphocyte proliferation increased significantly in the mice group that received SEB construct than PBS control group (p < 0.001). While there was a meaningful decrease in tumor size (p < 0.001), a significant increase in tumor tissue necrosis (p < 0.01) and also in survival time of the animal model receiving the recombinant construct was observed. The designed SEB gene construct can be a new model vaccine for breast cancer because it effectively induces necrosis and produces specific immune responses. This structure does not hurt normal cells and is a safer treatment than chemotherapy and radiation therapy. Its slow and long-term release gently stimulates the immune system and cellular memory. It could be applied as a new model for inducing apoptosis and antitumor immunity to treat cancer.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas de DNA , Camundongos , Animais , Vacinas de DNA/genética , Modelos Animais de Doenças , Vacinas Anticâncer/genética , Interleucina-4 , Necrose , Camundongos Endogâmicos BALB C
7.
Sci Rep ; 12(1): 21091, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473934

RESUMO

B-cell lymphoma 6 (BCL6) regulates various genes and is reported to be overexpressed in lymphomas and other malignancies. Thus, BCL6 inhibition or its tagging for degradation would be an amenable therapeutic approach. A library of 2500 approved drugs was employed to find BCL6 inhibitory molecules via virtual screening. Moreover, the 3D core structure of 170 BCL6 inhibitors was used to build a 3D QSAR model and predict the biological activity. The SNP database was analyzed to study the impact on the destabilization of BCL6/drug interactions. Structural similarity search and molecular docking analyses were used to assess the interaction between possible off-targets and BCL6 inhibitors. The tendency of drugs for passive membrane permeability was also analyzed. Lifitegrast (DB11611) had favorable binding properties and biological activity compared to the BI-3802. Missense SNPs were located at the essential interaction sites of the BCL6. Structural similarity search resulted in five BTB-domain containing off-target proteins. BI-3802 and Lifitegrast had similar chemical behavior and binding properties against off-target candidates. More interestingly, the binding affinity of BI-3802 (against off-targets) was higher than Lifitegrast. Energetically, Lifitegrast was less favorable for passive membrane permeability. The interaction between BCL6 and BI-3802 is more prone to SNP-derived variations. On the other hand, higher nonspecific binding of BI-3802 to off-target proteins could bring about higher undesirable properties. It should also be noted that energetically less desirable passive membrane translocation of Lifitegrast would demand drug delivery vehicles. However, further empirical evaluation of Lifitegrast would unveil its true potential.


Assuntos
Preparações Farmacêuticas , Simulação de Acoplamento Molecular
8.
Microb Pathog ; 173(Pt A): 105874, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356792

RESUMO

AIMS: Acinetobacter baumannii causes severe nosocomial infections and is a difficult-to-treat pathogen due to the development of multidrug-resistant (MDR) strains. Vaccines and antibody therapy represent alternative promising strategies for the control of infections caused by A. baumannii or its MDR strains. OmpA and BauA have been assigned as protective antigens. However, the efficacy of the combination of these antigens is yet to be investigated. In this study, we targeted two critical antigens of A. baumannii (BauA and OmpA) to enhance immunoprotecting against A. baumannii. METHODS AND RESULTS: The recombinant BauA and OmpA were expressed and purified. The purified proteins were administered to BALB/c mice alone and in combination. Immune sera were assessed against BauA, OmpA and two constructs harboring immunogenic loops of these antigen. The mice were then challenged with a clinical isolate of A. baumannii. Indirect ELISA confirmed significant antibody rise to the antigens. The immunogenic loops were detected in the hybrid construct. The specific sera detected OmpA, BauA and constructs harboring immunogenic loops of these antigen with different affinities. A significant decrease in the bacterial loads was noted in the spleen, liver, and lungs of the immunized mice groups. However, the group received combination of BauA and OmpA showed lower bacterial burden in the spleen and liver. CONCLUSIONS: Combination of BauA and OmpA enhances immunoprotection against A. baumannii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Sepse , Camundongos , Animais , Acinetobacter baumannii/metabolismo , Infecções por Acinetobacter/microbiologia , Proteínas da Membrana Bacteriana Externa , Camundongos Endogâmicos BALB C , Sepse/prevenção & controle , Vacinas Bacterianas
9.
Mol Immunol ; 149: 87-93, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35785672

RESUMO

Acinetobacter baumannii is one of the most notorious nosocomial pathogens with high mortality rates. Recently, egg yolk antibody (IgY), has been considered as a promising biomolecule against pneumonia caused by this bacterium. Loop 3 of outer membrane protein 34 (Omp34) was predicted as a highly exposed immunogenic peptide. However, its immunogenicity remains to be experimentally elucidated. In the current study, a construct composed of 5 copies of loop3 of Omp34 labeled as Omp34L3X5 was designed. This construct as well as the recombinant Omp34 were expressed, purified, and injected into laying hens to raise specific antibodies. The specific IgYs were extracted from hyperimmune egg yolks. The Omp34L3X5 and whole cells (WC) of A. baumannii served as antigens in indirect ELISA to assess the purified IgYs reactivity. These antibodies were administered to neutropenic mice 1 h before the challenge with 10 × LD50 of a clinical isolate of A. baumannii. The specific IgYs recognized recombinant Omp34 (P < 0.0001) as well as WC of A. baumannii (P < 0.05). The survival rate of mice that received anti- Omp34L3X5 or anti-Omp34 IgYs was 83.33 % and 100 % respectively. All control mice died within 24 h while mice that received non-specific IgYs died within 72 h. After 24 h, bacterial load in the lung of mice received non-specific IgYs, anti-Omp34L3X5 or anti-Omp34 IgYs were 2.03 × 108, 2.2 × 108, and 1.93 × 108 CFU/organ respectively. Bacterial load in the spleen of mice received non-specific IgYs, anti-Omp34L3X5 or anti-Omp34 IgYs were 1.03 × 108, 7.8 × 107, and 6.3 × 107 CFU/organ respectively. Bacterial load in lung and spleen of control mice were 3.03 × 109 and 1.45 × 108 CFU/organ respectively.


Assuntos
Acinetobacter baumannii , Animais , Proteínas da Membrana Bacteriana Externa , Galinhas , Modelos Animais de Doenças , Gema de Ovo , Feminino , Imunoglobulinas , Camundongos
10.
Int Immunopharmacol ; 110: 109013, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785727

RESUMO

Acinetobacter baumannii is a common causative agent of nosocomial infections, with a mortality rate of 43% in infected patients. Due to the emergence of multidrug-resistant (MDR) strains, vaccine development has become necessary. Since the 34 kDa outer membrane protein Omp34 has been identified as a potential vaccine target, we implemented a hybrid antigen approach to target its extracellular loops. Using bioinformatic and structural analyses, we selected Loop 3 from Omp34 and displayed it on the loopless C-lobe (LCL) of TbpB of Neisseria meningitidis. The hybrid antigen and the LCL were produced and used to immunize mice for passive and active immunization and challenge experiments in which the reactivity of the sera was assessed by ELISAs, the bacterial load in the tissues measured and the survival of immunized mice compared. LCL was ineffective in immunization against A. baumannii thus the resulting immunity was due to the presence of Omp34 loop 3. It resulted in increased survival and a reduced bacterial load in the tissues compared to the control groups. The findings indicate that the immunogenicity of Omp34 loops can induce protection against A. baumannii infection, and it could probably be used as a vaccine candidate to control the pathogenesis of A. baumannii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Neisseria meningitidis , Infecções por Acinetobacter/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Imunização , Camundongos
11.
Sci Rep ; 12(1): 12576, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869264

RESUMO

Acinetobacter baumannii easily turns into pan drug-resistant (PDR) with a high mortality rate. No effective commercial antibiotic or approved vaccine is available against drug-resistant strains of this pathogen. Egg yolk immunoglobulin (IgY) could be used as a simple and low-cost biotherapeutic against its infections. This study evaluates the prophylactic potential of IgY against A. baumannii in a murine pneumonia model. White Leghorn hens were immunized with intramuscular injection of the recombinant biofilm-associated protein (Bap) from A. baumannii on days 0, 21, 42, and 63. The reactivity and antibiofilm activity of specific IgYs raised against the Bap was evaluated by indirect ELISA and a microtiter plate assay for biofilm formation. The IgYs against Bap were able to decrease the biofilm formation ability of A. baumannii and protect the mice against the challenge of A. baumannii. IgYs antibody raised here shows a good antigen-specificity and protectivity which can be used in passive immunotherapy against A. baumannii. In conclusion, the IgY against biofilm-associated protein proves prophylactic in a murine pneumonia model.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Pneumonia , Infecções por Acinetobacter/prevenção & controle , Animais , Anticorpos/farmacologia , Biofilmes , Galinhas , Gema de Ovo , Feminino , Imunoglobulinas , Camundongos , Pneumonia/prevenção & controle
12.
Sci Rep ; 12(1): 10852, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760825

RESUMO

The recent outbreak of COVID-19 has increased hospital admissions, which could elevate the risk of nosocomial infections, such as A. baumannii and P. aeruginosa infections. Although effective vaccines have been developed against SARS-CoV-2, no approved treatment option is still available against antimicrobial-resistant strains of A. baumannii and P. aeruginosa. In the current study, an all-in-one antigen was designed based on an innovative, state-of-the-art strategy. In this regard, experimentally validated linear epitopes of spike protein (SARS-CoV-2), OmpA (A. baumannii), and OprF (P. aeruginosa) were selected to be harbored by mature OmpA as a scaffold. The selected epitopes were used to replace the loops and turns of the barrel domain in OmpA; OprF311-341 replaced the most similar sequence within the OmpA, and three validated epitopes of OmpA were retained intact. The obtained antigen encompasses five antigenic peptides of spike protein, which are involved in SARS-CoV-2 pathogenicity. One of these epitopes, viz. QTQTNSPRRARSV could trigger antibodies preventing super-antigenic characteristics of spike and alleviating probable autoimmune responses. The designed antigen could raise antibodies neutralizing emerging variants of SARS-CoV-2 since at least two epitopes are consensus. In conclusion, the designed antigen is expected to raise protective antibodies against SARS-CoV-2, A. baumannii, and P. aeruginosa.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , COVID-19 , Acinetobacter baumannii/metabolismo , Epitopos , Humanos , Pseudomonas aeruginosa , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
Int Immunopharmacol ; 108: 108731, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35367743

RESUMO

The complexity of treating Acinetobacter baumannii infections with the newly developed resistant strains has led researchers to confront this pathogen by developing vaccines. In this study, we used two important virulence factors of A. baumannii to elicit immunity against the A. baumannii. The immunogenic loops were from Baumannii acinetobactin utilization A (BauA) and 34kD outer membrane protein (Omp34). C-lobe derivative of the TbpB surface lipoprotein was used to display the superficial epitopes of the TbpA receptor protein of Neisseria meningitidis. The resulting loopless C-lobe (LCL) with implanted nucleotide sequences of the immunogenic loops from BauA and Omp34 was used as a hybrid antigen. The hybrid antigens were expressed in the E. coli and were used to immunize mice. The mice were challenged with a clinical isolate of A. baumannii (ABI022). Immunization with the hybrid antigens of the BauA loop 7 (BauAL7P3), Omp34 loop 3 Omp34L3P1, and the combination of both loops (BauAL7P3Omp34L3P1) brought about 42.86%, 42.86%, and 71.43% protection against A. baumannii infection. Histopathological findings in the immunized mice showed bronchioles clear from inflammatory cells and normal texture of the spleen and liver. The findings support the use of a multivalent vaccine to induce broadly reactive antibody responses against heterologous A. baumannii strains.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Sepse , Infecções por Acinetobacter/prevenção & controle , Animais , Anticorpos Antibacterianos , Antígenos/metabolismo , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Escherichia coli , Imidazóis , Camundongos , Oxazóis
14.
J Genet Eng Biotechnol ; 20(1): 42, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35254548

RESUMO

BACKGROUND: Efforts toward the development of an effective vaccine against Acinetobacter baumannii, one of the most notorious nosocomial pathogens, are still ongoing. In this regard, virulence factors are interesting targets. Type VI secretion system (T6SS) participates in the pathogenicity of A. baumannii. VgrG is a crucial component of T6SS prevalent among A. baumannii strains. This study was conducted to evaluate the immunoprotectivity of recombinant VgrG (rVgrG) cloned and over-expressed in Escherichia coli BL21 (DE3). BALB/c mice were immunized with the purified rVgrG. Specific anti-VgrG IgG titers were assessed by ELISA. Actively and passively immunized mice were challenged with lethal doses of A. baumannii ATCC 19606. The survival rate, the bacterial burden, and histopathology of tissues in infected mice were examined. RESULTS: Anti-VgrG IgG (p < 0.0001) was significantly increased in immunized mice. No death was seen in actively immunized mice infected with the lethal dose (LD) of 1.9 × 108 CFU of A. baumannii ATCC 19606 within 72 h. Challenge with 2.4 × 108 CFU of the pathogen showed a 75% survival rate. All immunized mice infected with 3.2 × 108 CFU of the pathogen died within 12 h. In passive immunization, no death was observed in mice that received LD of the bacteria incubated with the 1:250 dilution of the immune sera. An increased number of neutrophils around the peribronchial and perivascular areas were seen in unimmunized mouse lungs while passively immunized mice revealed moderate inflammation with infiltration of mixed mononuclear cells and neutrophils. The livers of the unimmunized mice showed inflammation and necrosis in contrast to the livers from immunized mice. Hyperplasia of the white pulp and higher neutrophils were evident in the spleen of unimmunized mice as against the normal histology of the immunized group. CONCLUSIONS: VgrG is a protective antigen that could be topologically accessible to the host antibodies. Although VgrG is not sufficient to be assigned as a stand-alone antigen for conferring full protection, it could participate in multivalent vaccine developments for elevated efficacy.

15.
J Recept Signal Transduct Res ; 42(1): 34-42, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33100099

RESUMO

PURPOSE: The interaction between PD-L1 on tumor cells and the programmed death 1 (PD1) on immune cells helps them to escape the immune system elimination. Therefore, developing therapeutic agents to block this interaction has garnered a lot of attention as a therapeutic approach. In the present study, we have tried to screen for an inhibitory compound to inhibit the interaction between the PD1/PD-L1 molecules. METHODS: In this regard, the structure of PD-L1 and its inhibitor were prepared and employed to generate an e-Pharmacophore model. A library of approved compounds was prepared and toxicity analysis using Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) predictor was performed. The built e-Pharmacophore model was validated and used to screen the prepared compound library. Ligand docking and binding energy calculation were performed on the screened ligands. RESULTS: A seven-feature e-Pharmacophore model was generated using the PD-L1 complex. All of the compounds within the library passed the ADMET criteria. Performing the virtual screening, only 79 compounds have survived the criteria to fit four pharmacophoric features. The compound with the highest binding energy was the liothyronine (T3). CONCLUSION: The ability of T3 in PD1/PD-L1 checkpoint blockade along with its potential in T4 reduction could be a desirable combination in cancer treatment. These abilities of T3 could be used to restore the ability of the immune system to eliminate tumor cells.


Assuntos
Antígeno B7-H1 , Tri-Iodotironina , Antígeno B7-H1/genética , Ligantes
16.
Int J Pept Res Ther ; 28(1): 33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34931119

RESUMO

The structural consequences of ongoing mutations on the SARS-CoV-2 spike-protein remains to be fully elucidated. These mutations could change the binding affinity between the virus and its target cell. Moreover, obtaining new mutations would also change the therapeutic efficacy of the designed drug candidates. To evaluate these consequences, 3D structure of a mutant spike protein was predicted and checked for stability, cavity sites, and residue depth. The docking analyses were performed between the 3D model of the mutated spike protein and the ACE2 protein and an engineered therapeutic ACE2 against COVID-19. The obtained results revealed that the N501Y substitution has altered the interaction orientation, augmented the number of interface bonds, and increased the affinity against the ACE2. On the other hand, the P681H mutation contributed to the increased cavity size and relatively higher residue depth. The binding affinity between the engineered therapeutic ACE2 and the mutant spike was significantly higher with a distinguished binding orientation. It could be concluded that the mutant spike protein increased the affinity, preserved the location, changed the orientation, and altered the interface amino acids of its interaction with both the ACE2 and its therapeutic engineered version. The obtained results corroborate the more aggressive nature of mutated SARS-CoV-2 due to their higher binding affinity. Moreover, designed ACe2-baased therapeutics would be still highly effective against covid-19, which could be the result of conserved nature of cellular ACE2. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10989-021-10346-1.

17.
Sci Rep ; 11(1): 23622, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880279

RESUMO

Spike glycoprotein (Sgp) is liable for binding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the host receptors. Since Sgp is the main target for vaccine and drug designing, elucidating its mutation pattern could help in this regard. This study is aimed at investigating the correspondence of specific residues to the SgpSARS-CoV-2 functionality by explorative interpretation of sequence alignments. Centrality analysis of the Sgp dissects the importance of these residues in the interaction network of the RBD-ACE2 (receptor-binding domain) complex and furin cleavage site. Correspondence of RBD to threonine500 and asparagine501 and furin cleavage site to glutamine675, glutamine677, threonine678, and alanine684 was observed; all residues are exactly located at the interaction interfaces. The harmonious location of residues dictates the RBD binding property and the flexibility, hydrophobicity, and accessibility of the furin cleavage site. These species-specific residues can be assumed as real targets of evolution, while other substitutions tend to support them. Moreover, all these residues are parts of experimentally identified epitopes. Therefore, their substitution may affect vaccine efficacy. Higher rate of RBD maintenance than furin cleavage site was predicted. The accumulation of substitutions reinforces the probability of the multi-host circulation of the virus and emphasizes the enduring evolutionary events.


Assuntos
SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Análise por Conglomerados , Humanos , Cadeias de Markov , Mutação , Ligação Proteica , Domínios Proteicos/genética , SARS-CoV-2/isolamento & purificação , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
18.
Microb Pathog ; 161(Pt B): 105291, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34798280

RESUMO

Acinetobacter baumannii, an opportunistic extracellular pathogen is one of the major causes of nosocomial infections. Omp34, also known as Omp33-36, is a bacterial porin protein involved in the virulence and fitness of this pathogen by adhesion to the host cell. This antigen nominated as an appropriate candidate for immunization against A. baumannii. In this study, the expression of the recombinant Omp34 (rOmp34) was carried out in E. coli BL21 (DE3). The immunogenicity of the rOmp34 in A. baumannii was studied in a murine sepsis model. Antibody response in mice injected with the recombinant protein was assessed using indirect ELISA. Bactericidal activity of rOmp34-immunized mice sera (1:10 dilution) against A. baumannii ATCC 19606 after 0, 1, 2, 4, and 8 h of incubation at 37 °C was assessed. In addition to survival rate, load of bacteria in liver and spleen of the infected mice were evaluated. A high titer of specific antibody equivalent to optical density of 1.54 ± 0.06 against rOmp34 was elicited in the immunized mice sera. Viability of the A. baumannii incubated 8 h with immunized mice sera was 64%. Homogenized liver and spleen samples of the control mice challenged with A. baumannii were loaded with 8 × 103 and 9 × 103 CFU per gram tissue respectively 48 h post-challenge as against complete clearance of A. baumannii in the immunized group. The protective immunity was achieved by challenging the mice groups with 5 × LD50 of live A. baumannii. Omp34 can be nominated as an immunogen that can bring about protection against Acinetobacter baumannii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Sepse , Infecções por Acinetobacter/prevenção & controle , Animais , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Escherichia coli , Camundongos , Sepse/prevenção & controle
19.
Front Immunol ; 12: 705772, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447375

RESUMO

Autoimmune diseases (ADs) could occur due to infectious diseases and vaccination programs. Since millions of people are expected to be infected with SARS-CoV-2 and vaccinated against it, autoimmune consequences seem inevitable. Therefore, we have investigated the whole proteome of the SARS-CoV-2 for its ability to trigger ADs. In this regard, the entire proteome of the SARS-CoV-2 was chopped into more than 48000 peptides. The produced peptides were searched against the entire human proteome to find shared peptides with similar experimentally confirmed T-cell and B-cell epitopes. The obtained peptides were checked for their ability to bind to HLA molecules. The possible population coverage was calculated for the most potent peptides. The obtained results indicated that the SARS-CoV-2 and human proteomes share 23 peptides originated from ORF1ab polyprotein, nonstructural protein NS7a, Surface glycoprotein, and Envelope protein of SARS-CoV-2. Among these peptides, 21 peptides had experimentally confirmed equivalent epitopes. Amongst, only nine peptides were predicted to bind to HLAs with known global allele frequency data, and three peptides were able to bind to experimentally confirmed HLAs of equivalent epitopes. Given the HLAs which have already been reported to be associated with ADs, the ESGLKTIL, RYPANSIV, NVAITRAK, and RRARSVAS were determined to be the most harmful peptides of the SARS-CoV-2 proteome. It would be expected that the COVID-19 pandemic and the vaccination against this pathogen could significantly increase the ADs incidences, especially in populations harboring HLA-B*08:01, HLA-A*024:02, HLA-A*11:01 and HLA-B*27:05. The Southeast Asia, East Asia, and Oceania are at higher risk of AD development.


Assuntos
Autoimunidade , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Proteoma/imunologia , SARS-CoV-2/imunologia , Proteínas Virais/imunologia , Doenças Autoimunes/etiologia , Doenças Autoimunes/imunologia , COVID-19/complicações , Vacinas contra COVID-19/efeitos adversos , Simulação por Computador , Epitopos de Linfócito B/imunologia , Antígenos HLA/imunologia , Humanos , Fragmentos de Peptídeos/imunologia , Biblioteca de Peptídeos
20.
Mol Immunol ; 135: 276-284, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33940514

RESUMO

Type VI Secretion System (T6SS) contributes to both virulence and antimicrobial resistance in Acinetobacter baumannii. Valine-glycine repeat protein G (VgrG) is the core component of T6SS that exists in many bacterial pathogens that have emerged as a potent mediator of pathogenicity in A. baumannii. Two conserved sequences of vgrG 1263-2295 and vgrG1263-1608 were identified antigenic in various strains of Acinetobacter baumannii. The vgrg1263-1608 sequence was implanted in the Loopless C lobe (LCL) from N. meningitidis for surface display and exposure to functional epitopes. The VgrG and LCL-VgrG were expressed and purified. Groups of BALB/c mice were immunized with these proteins and challenged with A. baumannii. Specific IgG titers, whole-cell ELISA, animal survival rates in active and passive immunizations, the bacterial burden in mice tissues, and cytotoxicity of the proteins were determined. The specific IgG suppressed bacterial burdens in the organs, and increased survival rates were noted in the immunized mice. LCL-VgrG immunization provided better protection against A. baumannii infection than the VgrG immunization. The conserved region of VgrG is probably a safe immunogen to effective vaccine development or an antiserum to control A. baumannii infections.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/imunologia , Oligopeptídeos/imunologia , Células A549 , Acinetobacter baumannii/patogenicidade , Animais , Anticorpos Antibacterianos/sangue , Carga Bacteriana/imunologia , Vacinas Bacterianas/administração & dosagem , Linhagem Celular , Feminino , Glicina/química , Humanos , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Oligopeptídeos/administração & dosagem , Sistemas de Secreção Tipo VI , Valina/química , Virulência/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...