Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38671771

RESUMO

Clinical tests like Timed Up and Go (TUG) facilitate the assessment of post-stroke mobility, but they lack detailed measures. In this study, 21 stroke survivors and 20 control participants underwent TUG, sit-to-stand (STS), and the 10 Meter Walk Test (10MWT). Tests incorporated single tasks (STs) and motor-cognitive dual-task (DTs) involving reverse counting from 200 in decrements of 10. Eight wearable motion sensors were placed on feet, shanks, thighs, sacrum, and sternum to record kinematic data. These data were analyzed to investigate the effects of stroke and DT conditions on the extracted features across segmented portions of the tests. The findings showed that stroke survivors (SS) took 23% longer for total TUG (p < 0.001), with 31% longer turn time (p = 0.035). TUG time increased by 20% (p < 0.001) from STs to DTs. In DTs, turning time increased by 31% (p = 0.005). Specifically, SS showed 20% lower trunk angular velocity in sit-to-stand (p = 0.003), 21% longer 10-Meter Walk time (p = 0.010), and 18% slower gait speed (p = 0.012). As expected, turning was especially challenging and worsened with divided attention. The outcomes of our study demonstrate the benefits of instrumented clinical tests and DTs in effectively identifying motor deficits post-stroke across sitting, standing, walking, and turning activities, thereby indicating that quantitative motion analysis can optimize rehabilitation procedures.

2.
Front Artif Intell ; 7: 1363226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449791

RESUMO

Background: Hospital readmissions for heart failure patients remain high despite efforts to reduce them. Predictive modeling using big data provides opportunities to identify high-risk patients and inform care management. However, large datasets can constrain performance. Objective: This study aimed to develop a machine learning based prediction model leveraging a nationwide hospitalization database to predict 30-day heart failure readmissions. Another objective of this study is to find the optimal feature set that leads to the highest AUC value in the prediction model. Material and methods: Heart failure patient data was extracted from the 2020 Nationwide Readmissions Database. A heuristic feature selection process incrementally incorporated predictors into logistic regression and random forest models, which yields a maximum increase in the AUC metric. Discrimination was evaluated through accuracy, sensitivity, specificity and AUC. Results: A total of 566,019 discharges with heart failure diagnosis were recognized. Readmission rate was 8.9% for same-cause and 20.6% for all-cause diagnoses. Random forest outperformed logistic regression, achieving AUCs of 0.607 and 0.576 for same-cause and all-cause readmissions respectively. Heuristic feature selection resulted in the identification of optimal feature sets including 20 and 22 variables from a pool of 30 and 31 features for the same-cause and all-cause datasets. Key predictors included age, payment method, chronic kidney disease, disposition status, number of ICD-10-CM diagnoses, and post-care encounters. Conclusion: The proposed model attained discrimination comparable to prior analyses that used smaller datasets. However, reducing the sample enhanced performance, indicating big data complexity. Improved techniques like heuristic feature selection enabled effective leveraging of the nationwide data. This study provides meaningful insights into predictive modeling methodologies and influential features for forecasting heart failure readmissions.

3.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339529

RESUMO

BACKGROUND: Falls are common and dangerous for stroke survivors. Current fall risk assessment methods rely on subjective scales. Objective sensor-based methods could improve prediction accuracy. OBJECTIVE: Develop machine learning models using inertial sensors to objectively classify fall risk in stroke survivors. Determine optimal sensor configurations and clinical test protocols. METHODS: 21 stroke survivors performed balance, Timed Up and Go, 10 Meter Walk, and Sit-to-Stand tests with and without dual-tasking. A total of 8 motion sensors captured lower limb and trunk kinematics, and 92 spatiotemporal gait and clinical features were extracted. Supervised models-Support Vector Machine, Logistic Regression, and Random Forest-were implemented to classify high vs. low fall risk. Sensor setups and test combinations were evaluated. RESULTS: The Random Forest model achieved 91% accuracy using dual-task balance sway and Timed Up and Go walk time features. Single thorax sensor models performed similarly to multi-sensor models. Balance and Timed Up and Go best-predicted fall risk. CONCLUSION: Machine learning models using minimal inertial sensors during clinical assessments can accurately quantify fall risk in stroke survivors. Single thorax sensor setups are effective. Findings demonstrate a feasible objective fall screening approach to assist rehabilitation.


Assuntos
Marcha , Acidente Vascular Cerebral , Humanos , Medição de Risco , Aprendizado de Máquina , Cognição , Equilíbrio Postural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...