Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Dyn ; 17(1): 2259223, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37728890

RESUMO

Steady states of dynamical systems, whether stable or unstable, are critical for understanding future evolution. Robust steady states, ones that persist under small changes in the model parameters, are desired when modelling ecological systems, where it is common for accurate and detailed information on functional form and parameters to be unavailable. Previous work by Jahedi et al. [Robustness of solutions of almost every system of equations, SIAM J. Appl. Math. 82(5) (2022), pp. 1791-1807; Structured systems of nonlinear equations, SIAM J. Appl. Math. 83(4) (2023), pp. 1696-1716.] has established criteria to imply the prevalence of robust steady states for systems with minimal predetermined structure, including conventional structured systems. We review that work and extend it by allowing symmetries in the system structure, which present added obstructions to robustness.


Assuntos
Ecossistema , Modelos Biológicos
2.
Biology (Basel) ; 9(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114047

RESUMO

As the coronavirus pandemic spreads across the globe, people are debating policies to mitigate its severity. Many complex, highly detailed models have been developed to help policy setters make better decisions. However, the basis of these models is unlikely to be understood by non-experts. We describe the advantages of simple models for COVID-19. We say a model is "simple" if its only parameter is the rate of contact between people in the population. This contact rate can vary over time, depending on choices by policy setters. Such models can be understood by a broad audience, and thus can be helpful in explaining the policy decisions to the public. They can be used to evaluate the outcomes of different policies. However, simple models have a disadvantage when dealing with inhomogeneous populations. To augment the power of a simple model to evaluate complicated situations, we add what we call "satellite" equations that do not change the original model. For example, with the help of a satellite equation, one could know what his/her chance is of remaining uninfected through the end of an epidemic. Satellite equations can model the effects of the epidemic on high-risk individuals, death rates, and nursing homes and other isolated populations. To compare simple models with complex models, we introduce our "slightly complex" Model J. We find the conclusions of simple and complex models can be quite similar. However, for each added complexity, a modeler may have to choose additional parameter values describing who will infect whom under what conditions, choices for which there is often little rationale but that can have big impacts on predictions. Our simulations suggest that the added complexity offers little predictive advantage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...