Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 34(11): 1779-1791.e9, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240759

RESUMO

Microbiome dysbiosis is a feature of diabetes, but how microbial products influence insulin production is poorly understood. We report the mechanism of BefA, a microbiome-derived protein that increases proliferation of insulin-producing ß cells during development in gnotobiotic zebrafish and mice. BefA disseminates systemically by multiple anatomic routes to act directly on pancreatic islets. We detail BefA's atomic structure, containing a lipid-binding SYLF domain, and demonstrate that it permeabilizes synthetic liposomes and bacterial membranes. A BefA mutant impaired in membrane disruption fails to expand ß cells, whereas the pore-forming host defense protein, Reg3, stimulates ß cell proliferation. Our work demonstrates that membrane permeabilization by microbiome-derived and host defense proteins is necessary and sufficient for ß cell expansion during pancreas development, potentially connecting microbiome composition with diabetes risk.


Assuntos
Diabetes Mellitus , Microbiota , Camundongos , Animais , Peixe-Zebra , Pâncreas/metabolismo , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Proteínas/metabolismo
2.
Biophys J ; 120(24): 5513-5520, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34800470

RESUMO

The viscosity of lipid membranes sets the timescales of membrane-associated motions, whether driven or diffusive, and therefore influences the dynamics of a wide range of cellular processes. Techniques to measure membrane viscosity remain sparse, however, and reported measurements to date, even of similar systems, give viscosity values that span orders of magnitude. To address this, we improve a method based on measuring both the rotational and translational diffusion of membrane-anchored microparticles and apply this approach and one based on tracking the motion of phase-separated lipid domains to the same system of phase-separated giant vesicles. We find good agreement between the two methods, with inferred viscosities within a factor of two of each other. Our single-particle tracking technique uses ellipsoidal microparticles, and we show that the extraction of physically meaningful viscosity values from their motion requires consideration of their anisotropic shape. The validation of our method on phase-separated membranes makes possible its application to other systems, which we demonstrate by measuring the viscosity of bilayers composed of lipids with different chain lengths ranging from 14 to 20 carbon atoms, revealing a very weak dependence of two-dimensional viscosity on lipid size. The experimental and analysis methods described here should be generally applicable to a variety of membrane systems, both reconstituted and cellular.


Assuntos
Bicamadas Lipídicas , Difusão , Membranas , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...