Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 11(1): 2746-2748, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36285426

RESUMO

American robins and dark-eyed juncos migrate across North America and have been found to be competent hosts for some bacterial and viral pathogens, but their contributions to arthropod-borne diseases more broadly remain poorly characterized. Here, we sampled robins and juncos in multiple sites across North America for arthropod-borne bacterial pathogens of public health significance. We identified two novel Rickettsia spp. in one wintering migrant per bird species related to bellii, transitional, and spotted rickettsiae fever groups. Stable isotope analyses of feathers suggested spring migration of these common songbirds could disperse these novel rickettsiae hundreds-to-thousands of kilometers to host breeding grounds. Further work is needed to characterize zoonotic potential of these rickettsiae and host reservoir competence.


Assuntos
Rickettsia , Aves Canoras , Animais , Rickettsia/genética , Estações do Ano , América do Norte
2.
Int J Parasitol ; 51(9): 719-728, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33722680

RESUMO

Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.


Assuntos
Doenças das Aves , Haemosporida , Malária Aviária , Parasitos , Plasmodium , Animais , Doenças das Aves/epidemiologia , Florestas , Haemosporida/genética , Humanos , Malária Aviária/epidemiologia , Filogenia , Plasmodium/genética , Prevalência
3.
Integr Comp Biol ; 60(5): 1147-1159, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777043

RESUMO

Sonations are sounds that animals produce with structures other than the vocal apparatus for communication. In birds, many sonations are usually produced with modified flight feathers through diverse kinematic mechanisms. For instance, aeroelastic fluttering of feathers produces tonal sound when airflow exceeds a threshold velocity and induces flight feathers to oscillate at a constant frequency. The Fork-tailed flycatcher (Tyrannus savana) is a Neotropical bird with both migratory and year-round resident subspecies that differ in the shape of the outer primary feathers of their wings. By integrating behavioral observations, audio recordings, and high-speed videos, we find that male Fork-tailed flycatchers produce sonations with their outer primary feathers P8-10, and possibly P7. These sounds are produced during different behavioral contexts including: the pre-dawn display, intraspecific territorial disputes, when attacking potential nest predators, and when escaping. By placing feathers in a wind tunnel, we elicited flutter at frequencies that matched the acoustic signature of sounds recorded in the wild, indicating that the kinematic mechanism responsible for sound production is aeroelastic flutter. Video of wild birds indicated that sonations were produced during the downstroke. Finally, the feathers of migratory (T.s.savana) and year-round resident (T.s.monachus) Fork-tailed flycatchers flutter in feather locations that differ in shape between the subspecies, and these shape differences between the subspecies result in sounds produced at different frequencies.


Assuntos
Passeriformes , Aves Canoras , Comunicação Animal , Animais , Plumas , Voo Animal , Masculino
4.
Curr Biol ; 30(7): 1312-1321.e6, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32197080

RESUMO

Migratory animals move up to thousands of kilometers every year [1]. Losses of migration (i.e., migratory drop-offs) occur when individuals of a migratory species stop migrating and establish founder sedentary populations, a phenomenon documented in birds [2-5] and butterflies [6]. In theory, losses-and also gains-of migration might promote speciation if sedentary and migratory populations become reproductively isolated [7-9]. Because migratory and sedentary strategies involve alternative physiological, behavioral, and morphological traits [10-13], divergence along multiple axes of organismal function is expected to accompany switches in migratory behavior, potentially accelerating speciation. We present evidence of speciation driven by a migratory drop-off in the fork-tailed flycatcher (Tyrannus savana) resulting in reproductive isolation likely driven by changes in breeding schedules (allochronic speciation [13-15]) and geographic isolation of breeding grounds (allopatric speciation [16]). Phylogenetic analyses across New World flycatchers (Tyrannidae) showed that an association between speciation and drop-offs is also observable at a macroevolutionary scale. Loss of migration was significantly more frequent than its gain, and speciation rates of migratory and partially migratory lineages (i.e., species having both migratory and sedentary populations) exceeded those of sedentary lineages. Models of trait evolution indicated that partial migration is an intermediate step between migratory and sedentary states in this family. Given that partial migration is widespread across migratory animals (e.g., of all migratory birds, ca. 51% are partially migratory [5]), speciation via switches in migratory behavior might be an important yet overlooked mechanism of animal diversification.


Assuntos
Migração Animal , Especiação Genética , Passeriformes/fisiologia , Isolamento Reprodutivo , Animais , Passeriformes/genética
5.
Ecol Evol ; 9(10): 5752-5765, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31160996

RESUMO

Identifying the processes that determine avian migratory strategies in different environmental contexts is imperative to understanding the constraints to survival and reproduction faced by migratory birds across the planet.We compared the spring migration strategies of Fork-tailed Flycatchers (Tyrannus s. savana) that breed at south-temperate latitudes (i.e., austral migrants) vs. tropical latitudes (i.e., intratropical migrants) in South America. We hypothesized that austral migrant flycatchers are more time-selected than intratropical migrants during spring migration. As such, we predicted that austral migrants, which migrate further than intratropical migrants, will migrate at a faster rate and that the rate of migration for austral migrants will be positively correlated with the onset of spring migration.We attached light-level geolocators to Fork-tailed Flycatchers at two tropical breeding sites in Brazil and at two south-temperate breeding sites in Argentina and tracked their movements until the following breeding season.Of 286 geolocators that were deployed, 37 were recovered ~1 year later, of which 28 provided useable data. Rate of spring migration did not differ significantly between the two groups, and only at one site was there a significantly positive relationship between date of initiation of spring migration and arrival date.This represents the first comparison of individual migratory strategies among conspecific passerines breeding at tropical vs. temperate latitudes and suggests that austral migrant Fork-tailed Flycatchers in South America are not more time-selected on spring migration than intratropical migrant conspecifics. Low sample sizes could have diminished our power to detect differences (e.g., between sexes), such that further research into the mechanisms underpinning migratory strategies in this poorly understood system is necessary.

6.
Am Nat ; 193(6): 897, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31094603
7.
Am Nat ; 193(2): E41-E56, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30720362

RESUMO

Species co-occurrence in local assemblages is shaped by distinct processes at different spatial and temporal scales. Here we focus on historical explanations and examine the phylogenetic structure of local assemblages of the Furnariides clade (Aves: Passeriformes), assessing the influence of diversification rates on the assembly and species co-occurrence within those assemblages. Using 120 local assemblages across Bolivia and Argentina and a nearly complete phylogeny for the clade, we analyzed assemblage phylogenetic structure, applying a recently developed model (DAMOCLES, or dynamic assembly model of colonization, local extinction, and speciation) accounting for the historical processes of speciation, colonization, and local extinction. We also evaluated how diversification rates determine species co-occurrence. We found that the assembly of Furnariides assemblages can be explained largely by speciation, colonization, and local extinction without invoking current local species interactions. Phylogenetic structure of open habitat assemblages mainly showed clustering, characterized by faster rates of colonization and local extinction than in forest habitats, whereas forest habitat assemblages were congruent with the model's equal rates expectation, thus highlighting the influence of habitat preferences on assembly and co-occurrence patterns. Our results suggest that historical processes are sufficient to explain local assemblage phylogenetic structure, while there is little evidence for species ecological interactions in avian assemblage diversity and composition.


Assuntos
Ecossistema , Passeriformes/genética , Filogenia , Animais , Especiação Genética , América do Sul
8.
J Anim Ecol ; 79(5): 983-92, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20546065

RESUMO

1. Little is known about mechanisms that drive migration of birds at tropical latitudes. Because most migratory bird species in South America have populations that are present year-round, partial migration (in which only some individuals of a given population migrate at the end of the breeding season) is likely to be common, providing an opportunity to assess proximate mechanisms of migration. 2. Two non-mutually exclusive hypotheses explaining intraspecific variation in migratory behaviour were tested in a Tropical Kingbird Tyrannus melancholicus population in the southern Amazon Basin, where a dramatic dry season decrease in the abundance of insect food for kingbirds may promote migration of some individuals. 3. The Dominance hypothesis predicts sub-dominant individuals migrate at the end of the breeding season and dominant individuals do not, whereas the Body Size hypothesis predicts smaller individuals migrate and larger individuals do not. 4. Based on 4 years of data on individually-marked birds, strong support was found for occurrence of partial migration in the study population. 5. In the best model, the largest males (which are typically older and dominant to younger individuals) had the highest probability of migrating. Younger females (which are the smallest individuals in the population) were also more likely to migrate than other kingbirds, except the largest males. Thus, an individual's probability of migrating was associated with a more complex interaction of size, age and sex than predicted by current hypotheses. 6. These results suggest that determinants of migratory behaviour differ between North temperate and tropical latitudes. Most tests of partial migration theory have been conducted on granivores (e.g. emberizids) or omnivores (e.g. turdids and icterids) at North temperate latitudes, where seasonality is primarily defined by temperature cycles. In tropical South America, however, the most common long-distance migrants are primarily insectivorous (i.e. tyrannids), and seasonality is largely defined by rainfall cycles. 7. We propose a hypothesis based on seasonal food limitation to explain partial migration of primarily insectivorous species in seasonal tropical habitats.


Assuntos
Migração Animal/fisiologia , Tamanho Corporal/fisiologia , Ecossistema , Predomínio Social , Aves Canoras/fisiologia , Animais , Bolívia , Feminino , Masculino , Modelos Biológicos , Estações do Ano
9.
Ecol Appl ; 20(2): 398-418, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20405795

RESUMO

Migratory bird needs must be met during four phases of the year: breeding season, fall migration, wintering, and spring migration; thus, management may be needed during all four phases. The bulk of research and management has focused on the breeding season, although several issues remain unsettled, including the spatial extent of habitat influences on fitness and the importance of habitat on the breeding grounds used after breeding. Although detailed investigations have shed light on the ecology and population dynamics of a few avian species, knowledge is sketchy for most species. Replication of comprehensive studies is needed for multiple species across a range of areas, Information deficiencies are even greater during the wintering season, when birds require sites that provide security and food resources needed for survival and developing nutrient reserves for spring migration and, possibly, reproduction. Research is needed on many species simply to identify geographic distributions, wintering sites, habitat use, and basic ecology. Studies are complicated, however, by the mobility of birds and by sexual segregation during winter. Stable-isotope methodology has offered an opportunity to identify linkages between breeding and wintering sites, which facilitates understanding the complete annual cycle of birds. The twice-annual migrations are the poorest-understood events in a bird's life. Migration has always been a risky undertaking, with such anthropogenic features as tall buildings, towers, and wind generators adding to the risk. Species such as woodland specialists migrating through eastern North America have numerous options for pausing during migration to replenish nutrients, but some species depend on limited stopover locations. Research needs for migration include identifying pathways and timetables of migration, quality and distribution of habitats, threats posed by towers and other tall structures, and any bottlenecks for migration. Issues such as human population growth, acid deposition, climate change, and exotic diseases are global concerns with uncertain consequences to migratory birds and even less-certain remedies. Despite enormous gaps in our understanding of these birds, research, much of it occurring in the past 30 years, has provided sufficient information to make intelligent conservation efforts but needs to expand to handle future challenges.


Assuntos
Migração Animal/fisiologia , Aves/crescimento & desenvolvimento , Aves/fisiologia , Conservação dos Recursos Naturais/métodos , Animais , Modelos Teóricos , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...