Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(35): 19164-19170, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37610128

RESUMO

A ZnII8L6 pseudocube containing anthracene-centered ligands, a ZnII4L'4 tetrahedron with a similar side length as the cube, and a trigonal prism ZnII6L3L'2 were formed in equilibrium from a common set of subcomponents. Hetero-Diels-Alder reaction with photogenerated singlet oxygen transformed the anthracene-containing "L" ligands into endoperoxide "LO" ones and ultimately drove the integrative self-sorting to form the trigonal prismatic cage ZnII6LO3L'2 exclusively. This ZnII6LO3L'2 structure lost dioxygen in a retro-Diels-Alder reaction after heating, which resulted in reversion to the initial ZnII8L6 + ZnII4L'4 ⇌ 2 × ZnII6L3L'2 equilibrating system. Whereas the ZnII8L6 pseudocube had a cavity too small for guest encapsulation, the ZnII6L3L'2 and ZnII6LO3L'2 trigonal prisms possessed peanut-shaped internal cavities with two isolated compartments divided by bulky anthracene panels. Guest binding was also observed to drive the equilibrating system toward exclusive formation of the ZnII6L3L'2 structure, even in the absence of reaction with singlet oxygen.

2.
Angew Chem Int Ed Engl ; 62(39): e202309589, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37610599

RESUMO

The anthracene panels of two tetrahedral MII 4 L6 cages, where MII =CoII or FeII , were found to react with photogenerated singlet oxygen (1 O2 ) in a hetero-Diels-Alder reaction. ESI-MS analysis showed the cobalt(II) cages to undergo complete transformation of all anthracene panels into endoperoxides, whereas the iron(II) congeners underwent incomplete conversion. The reaction was found to be partially reversible in the case of the 1-FeII cage. The dioxygen-cage cycloadducts were found to bind a set of guest molecules more weakly than the parent cages, with affinity dropping by more than two orders of magnitude in some cases. The light-driven cycloaddition reaction between cage and 1 O2 thus served as a stimulus for guest release and reuptake.

3.
ACS Appl Mater Interfaces ; 12(38): 43160-43166, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32851843

RESUMO

On account of its nonbiodegradable nature and persistence in the environment, perfluorooctanoic acid (PFOA) accumulates in water resources and poses serious environmental issues in many parts of the world. Here, we present the development of two fluorine-rich calix[4]arene-based porous polymers, FCX4-P and FCX4-BP, and demonstrate their utility for the efficient removal of PFOA from water. These materials featured Brunauer-Emmett-Teller (BET) surface areas of up to 450 m2 g-1, which is slightly lower than their nonfluorinated counterparts (up to 596 m2 g-1). FCX4-P removes PFOA at environmentally relevant concentrations with a high rate constant of 3.80 g mg-1 h-1 and reached an exceptional maximum PFOA uptake capacity of 188.7 mg g-1. In addition, it could be regenerated by simple methanol wash and reused without a significant decrease in performance.

4.
ACS Appl Mater Interfaces ; 10(20): 17359-17365, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29687997

RESUMO

Calixarenes are a common motif in supramolecular chemistry but have rarely been incorporated in structurally well-defined covalent 2D materials. Such a task is challenging, especially without a template, because of the nonplanar configuration and conformational flexibility of the calixarene ring. Here, we report the first-of-a-kind solvothermal synthesis of a calix[4]arene-based 2D polymer (CX4-NS) that is porous, covalent, and isolated as few-layer thick (3.52 nm) nanosheets. Experimental and theoretical characterization of the nanosheets is presented. Atomic force microscopy and transmission electron microscopy results are consistent with the calculated lowest energy state of the polymer. In the lowest energy state, parallel layers are tightly packed, and the calixarenes adopt the 1,2-alternate conformation, which gives rise to a two-dimensional pattern and a rhombic unit cell. We tested the material's ability to adsorb I2 vapor and observed a maximum capacity of 114 wt %. Molecular simulations extended to model I2 capture showed excellent agreement with experiments. Furthermore, the material was easily regenerated by mild ethanol washings and could be reused with minimal loss of efficiency.

5.
ACS Appl Mater Interfaces ; 10(3): 2976-2981, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29308872

RESUMO

Organic micropollutants are hazards to the environment and human health. Conventional technologies are often inefficient at removing them from wastewater. For example, commercial activated carbon (AC) exhibits slow uptake rates, limited capacities, and is costly to regenerate. Here, we report the utility of porous calix[4]arene-based materials, CalPn (n = 2-4), for water purification. Calixarenes are a common motif in supramolecular chemistry but have rarely been incorporated into extended, porous networks such as organic polymers. CalPn exhibit pollutant uptake rates (kobs) and adsorption capacities (qmax) that are among the highest reported. For example, the kobs of CalP4 for bisphenol A (BPA) is 2.12 mg/g·min, which is significantly higher (16 to 240 times) than kobs for ACs and 1.4 times higher than that of the most efficient material previously reported; the qmax of CalP4 for BPA is 403 mg/g. The CalPn polymers can be regenerated several times, with performance levels left undiminished, by a simple wash procedure that is less energy intensive than that required for ACs. These findings demonstrate the potential of calixarene-based materials for organic micropollutant removal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...