Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Cell Commun Signal ; 22(1): 322, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863060

RESUMO

Bone resorption is driven through osteoclast differentiation by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-Β ligand (RANKL). We noted that a disintegrin and metalloproteinase (ADAM) 10 and ADAM17 are downregulated at the expression level during osteoclast differentiation of the murine monocytic cell line RAW264.7 in response to RANKL. Both proteinases are well known to shed a variety of single-pass transmembrane molecules from the cell surface. We further showed that inhibitors of ADAM10 or ADAM17 promote osteoclastic differentiation and furthermore enhance the surface expression of receptors for RANKL and M-CSF on RAW264.7 cells. Using murine bone marrow-derived monocytic cells (BMDMCs), we demonstrated that a genetic deficiency of ADAM17 or its required regulator iRhom2 leads to increased osteoclast development in response to M-CSF and RANKL stimulation. Moreover, ADAM17-deficient osteoclast precursor cells express increased levels of the receptors for RANKL and M-CSF. Thus, ADAM17 negatively regulates osteoclast differentiation, most likely through shedding of these receptors. To assess the time-dependent contribution of ADAM10, we blocked this proteinase by adding a specific inhibitor on day 0 of BMDMC stimulation with M-CSF or on day 7 of subsequent stimulation with RANKL. Only ADAM10 inhibition beginning on day 7 increased the size of developing osteoclasts indicating that ADAM10 suppresses osteoclast differentiation at a later stage. Finally, we could confirm our findings in human peripheral blood mononuclear cells (PBMCs). Thus, downregulation of either ADAM10 or ADAM17 during osteoclast differentiation may represent a novel regulatory mechanism to enhance their differentiation process. Enhanced bone resorption is a critical issue in osteoporosis and is driven through osteoclast differentiation by specific osteogenic mediators. The present study demonstrated that the metalloproteinases ADAM17 and ADAM10 critically suppress osteoclast development. This was observed for a murine cell line, for isolated murine bone marrow cells and for human blood cells by either preferential inhibition of the proteinases or by gene knockout. As a possible mechanism, we studied the surface expression of critical receptors for osteogenic mediators on developing osteoclasts. Our findings revealed that the suppressive effects of ADAM17 and ADAM10 on osteoclastogenesis can be explained in part by the proteolytic cleavage of surface receptors by ADAM10 and ADAM17, which reduces the sensitivity of these cells to osteogenic mediators. We also observed that osteoclast differentiation was associated with the downregulation of ADAM10 and ADAM17, which reduced their suppressive effects. We therefore propose that this downregulation serves as a feedback loop for enhancing osteoclast development.


Assuntos
Proteína ADAM10 , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide , Diferenciação Celular , Regulação para Baixo , Proteínas de Membrana , Osteoclastos , Ligante RANK , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Osteoclastos/metabolismo , Osteoclastos/citologia , Animais , Diferenciação Celular/genética , Camundongos , Regulação para Baixo/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Ligante RANK/metabolismo , Células RAW 264.7 , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
2.
Antioxidants (Basel) ; 13(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38671918

RESUMO

Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.

3.
Biomater Adv ; 152: 213516, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37348330

RESUMO

In the lung, pulmonary epithelial cells undergo mechanical stretching during ventilation. The associated cellular mechanoresponse is still poorly understood at the molecular level. Here, we demonstrate that activation of the mechanosensitive cation channel Piezo1 in a human epithelial cell line (H441) and in primary human lung epithelial cells induces the proteolytic activity of the metalloproteinases ADAM10 and ADAM17 at the plasma membrane. These ADAMs are known to convert cell surface expressed proteins into soluble and thereby play major roles in proliferation, barrier regulation and inflammation. We observed that chemical activation of Piezo1 promotes cleavage of substrates that are specific for either ADAM10 or ADAM17. Activation of Piezo1 also induced the synthesis and ADAM10/17-dependent release of the growth factor amphiregulin (AREG). In addition, junctional adhesion molecule A (JAM-A) was shed in an ADAM10/17-dependent manner resulting in a reduction of cell contacts. Stretching experiments combined with Piezo1 knockdown further demonstrated that mechanical activation promotes shedding via Piezo1. Most importantly, high pressure ventilation of murine lungs increased AREG and JAM-A release into the alveolar space, which was reduced by a Piezo1 inhibitor. Our study provides a novel link between stretch-induced Piezo1 activation and the activation of ADAM10 and ADAM17 in lung epithelium. This may help to understand acute respiratory distress syndrome (ARDS) which is induced by ventilation stress and goes along with perturbed epithelial permeability and release of growth factors.


Assuntos
Secretases da Proteína Precursora do Amiloide , Pulmão , Humanos , Camundongos , Animais , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Pulmão/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células Epiteliais/metabolismo , Canais Iônicos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteases/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo
4.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175428

RESUMO

Mechanosensing plays an essential role in maintaining tissue functions. Across the human body, several tissues (i.e., striated muscles, bones, tendons, ligaments, as well as cartilage) require mechanical loading to exert their physiological functions. Contrary, mechanical unloading triggers pathological remodeling of these tissues and, consequently, human body dysfunctions. At the cellular level, both mechanical loading and unloading regulate a wide spectrum of cellular pathways. Among those, pathways regulated by oxidants such as reactive oxygen species (ROS) represent an essential node critically controlling tissue organization and function. Hence, a sensitive balance between the generation and elimination of oxidants keeps them within a physiological range. Here, the Nuclear Factor-E2-related factor 2/Antioxidant response element (Nrf2/ARE) system plays an essential role as it constitutes the major cellular regulation against exogenous and endogenous oxidative stresses. Dysregulations of this system advance, i.a., liver, neurodegenerative, and cancer diseases. Herein, we extend our comprehension of the Nrf2 system to the aforementioned mechanically sensitive tissues to explore its role in their physiology and pathology. We demonstrate the relevance of it for the tissues' functionality and highlight the imperative to further explore the Nrf2 system to understand the physiology and pathology of mechanically sensitive tissues in the context of redox biology.


Assuntos
Elementos de Resposta Antioxidante , Fator 2 Relacionado a NF-E2 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Mecanotransdução Celular , Fator 2 Relacionado a NF-E2/metabolismo , Oxidantes , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
5.
Int J Biochem Cell Biol ; 158: 106394, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871937

RESUMO

Histone hypermethylation represses gene transcription, which affects cartilage homeostasis or joint remodeling. Trimethylation of lysine 27 of histone 3 (H3K27me3) changes epigenome signatures, regulating tissue metabolism. This study aimed to investigate whether loss of H3K27me3 demethylase Kdm6a function affected osteoarthritis development. We revealed that chondrocyte-specific Kdm6a knockout mice developed relatively long femurs and tibiae as compared to wild-type mice. Kdm6a deletion mitigated osteoarthritis symptoms, including articular cartilage loss, osteophyte formation, subchondral trabecular bone loss, and irregular walking patterns of destabilized medial meniscus-injured knees. In vitro, loss of Kdm6a function compromised the loss in expression of key chondrocyte markers Sox9, collagen II, and aggrecan and improved glycosaminoglycan production in inflamed chondrocytes. RNA sequencing showed that Kdm6a loss changed transcriptomic profiles, which contributed to histone signaling, NADPH oxidase, Wnt signaling, extracellular matrix, and cartilage development in articular cartilage. Chromatin immunoprecipitation sequencing uncovered that Kdm6a knockout affected H3K27me3 binding epigenome, repressing Wnt10a and Fzd10 transcription. Wnt10a was, among others, functional molecules regulated by Kdm6a. Forced Wnt10a expression attenuated Kdm6a deletion-induced glycosaminoglycan overproduction. Intra-articular administration with Kdm6a inhibitor GSK-J4 attenuated articular cartilage erosion, synovitis, and osteophyte formation, improving gait profiles of injured joints. In conclusion, Kdm6a loss promoted transcriptomic landscapes contributing to extracellular matrix synthesis and compromised epigenetic H3K27me3-mediated promotion of Wnt10a signaling, preserving chondrocytic activity to attenuate osteoarthritic degeneration. We highlighted the chondroprotective effects of Kdm6a inhibitor for mitigating the development of osteoarthritic disorders.


Assuntos
Cartilagem Articular , Osteoartrite , Osteófito , Animais , Camundongos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Metilação de DNA , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/farmacologia , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Proteínas do Tecido Nervoso/genética , Osteoartrite/genética , Osteoartrite/metabolismo , Osteófito/genética , Osteófito/metabolismo , Proteínas Wnt/genética
6.
Anaerobe ; 80: 102698, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36681234

RESUMO

OBJECTIVE: Porphyromonas gingivalis is an oral key pathogen and known to be very diverse in geno- and phenotypes. It is a fastidious bacterium with low O2-tolerance and 3-7 days of incubation are necessary. With growing interest in the field of microbial endocrinology we explored the potential growth-stimulating effect of hydrocortisone (HC, synonym cortisol) on P. gingivalis cultures. MATERIAL AND METHODS: Six different P. gingivalis strains were pre-incubated in supplemented Brain-Heart-Infusion broth under appropriate conditions for 24 h, diluted and transferred into microplates. A newly developed and semi-automated spectrophotometric measurement in triplicate, applying a SpectraMax i3x microplate reader at an optical density of 600 nm, was conducted to test growth differences between test group (exposed to a supplement of either 1.25, 2.5, 5, 10, or 20 µg/ml of hydrocortisone) and control group over 48 h of anaerobic incubation (O2 ≤ 1%). Furthermore, strains were also incubated on HC-supplemented blood agar to test for a possible growth-stimulating effect on solid media. RESULTS: HC significantly stimulated the lag-phase growth of four out of six P. gingivalis strains. Our data suggest a concentration-dependent growth stimulatory effect of HC between 2.5 and 5 µg/ml, while below 1.25 µg/ml and above 10 µg/ml HC either did not stimulate or inhibited growth. CONCLUSIONS: HC could reduce the incubation time when isolating P. gingivalis from clinical samples and could boost low biomass cultivations especially during their lag-phase. The growth-modulating effect might be via modulation of virulence factors/quorum sensing gene expression or by reactive oxygen species(ROS)-capturing during early stages of bacterial growth. Further experiments are necessary to explain the mechanism behind our observations.


Assuntos
Hidrocortisona , Porphyromonas gingivalis , Hidrocortisona/farmacologia , Hidrocortisona/metabolismo , Porphyromonas gingivalis/genética , Fatores de Virulência/genética
7.
Ann Anat ; 246: 152023, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36400339

RESUMO

Porphyromonas gingivalis lipopolysaccharide (PG-LPS) is an important virulence factor potentially contributing to periodontal tissue destruction. Toll-like receptor 4 (Tlr4) is a key mediator of NF-kB activation during pathogen recognition. Previous work using Tlr4-specific antibodies demonstrated a partial neutralization of PG-LPS effects on murine cementoblasts, which can affect cell function and regulate gene expression of osteoclastic markers. PG-LPS also potentially influence the inflammation process and the resorption of mineralized tissues. Yet, such inflammatory responses and cell signaling events remain to be characterized at the protein level. We thus investigated the effect of 1 and 10 µg/ml of PG-LPS, respectively, on cell morphology, cell viability, and selected key downstream molecules of the Tlr4 signaling cascade in cementoblasts. High concentrations of PG-LPS (10 µg/ml) significantly reduced cell viability after 48 h. Upon PG-LPS-stimulation, Tlr4 was significantly downregulated. Equally, IκBα, a downstream molecule, was downregulated in terms of phosphorylation and protein production. Furthermore, downstream signaling kinases, like serine/threonine kinase phospho-AKT and the mitogen-activated protein kinase (MAPK)-family, specifically phospho-ERK1/2, were significantly upregulated under high PG-LPS-concentrations. We provide new insights into PG-LPS-triggered intracellular signaling pathways in cementoblasts and thus deliver a basis for further research in PG-mediated periodontal inflammation.


Assuntos
Lipopolissacarídeos , Porphyromonas gingivalis , Proteínas Proto-Oncogênicas c-akt , Receptor 4 Toll-Like , Animais , Camundongos , Cemento Dentário/metabolismo , Inflamação , Lipopolissacarídeos/toxicidade , Fosforilação , Porphyromonas gingivalis/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 4 Toll-Like/metabolismo
8.
BMC Musculoskelet Disord ; 23(1): 1015, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434613

RESUMO

BACKGROUND: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial transcription factor for cellular redox homeostasis. The association of Nrf2 with elderly female osteoporotic has yet to be fully described. The aim was to elucidate a potential age-dependent Nrf2 contribution to female osteoporosis in mice. METHODS: Eighteen female wild type (WT) and 16 Nrf2-knockout (KO) mice were sacrificed at different ages (12 weeks = young mature adult and 90 weeks = old) to analyze their femurs. The morphological properties (trabecular and cortical) were evaluated by micro-computed tomography (µCT) and compared to gold standard histochemistry analysis. The quasi-static compression tests were performed to calculate the mechanical properties of bones. Additionally, the population of bone resorbing cells and aromatase expression by osteocytes was immunohistochemically evaluated and empty osteocyte lacunae was counted in cortical bone. RESULTS: Old Nrf2-KO mice revealed a significantly reduced trabecular bone mineral density (BMD), cortical thickness, cortical area, and bone fraction compared to old WT mice, regardless of no significant difference in skeletally mature young adult mice between WT and KO. Specifically, while all old WT mice showed thin metaphyseal trabeculae, trabecular bone was completely absent in 60% of old KO mice. Additionally, old KO mice showed significantly more osteoclast-like cells and fewer aromatase-positive osteocytes than WT mice, whereas the occurrence of empty osteocyte lacunae did not differ between both groups. Nrf2-KO mice further showed an age-dependently reduced fracture resilience compared to age-matched WT mice. CONCLUSION: Our results suggest that chronic Nrf2 loss can lead to age-dependent progression of female osteoporosis.


Assuntos
Fator 2 Relacionado a NF-E2 , Osteoporose , Feminino , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Aromatase , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Osteoporose/diagnóstico por imagem , Osteoporose/genética , Osteoporose/metabolismo , Camundongos Knockout
9.
Cells ; 11(17)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36078105

RESUMO

Bone health-targeting drug development strategies still largely rely on inferior 2D in vitro screenings. We aimed at developing a scaffold-free progenitor cell-based 3D biomineralization model for more physiological high-throughput screenings. MC3T3-E1 pre-osteoblasts were cultured in α-MEM with 10% FCS, at 37 °C and 5% CO2 for up to 28 days, in non-adherent V-shaped plates to form uniformly sized 3D spheroids. Osteogenic differentiation was induced by 10 mM ß-glycerophosphate and 50 µg/mL ascorbic acid. Mineralization stages were assessed through studying expression of marker genes, alkaline phosphatase activity, and calcium deposition by histochemistry. Mineralization quality was evaluated by Fourier transformed infrared (FTIR) and scanning electron microscopic (SEM) analyses and quantified by micro-CT analyses. Expression profiles of selected early- and late-stage osteoblast differentiation markers indicated a well-developed 3D biomineralization process with strongly upregulated Col1a1, Bglap and Alpl mRNA levels and type I collagen- and osteocalcin-positive immunohistochemistry (IHC). A dynamic biomineralization process with increasing mineral densities was observed during the second half of the culture period. SEM-Energy-Dispersive X-ray analyses (EDX) and FTIR ultimately confirmed a native bone-like hydroxyapatite mineral deposition ex vivo. We thus established a robust and versatile biomimetic, and high-throughput compatible, cost-efficient spheroid culture model with a native bone-like mineralization for improved pharmacological ex vivo screenings.


Assuntos
Biomimética , Osteogênese , Calcificação Fisiológica , Durapatita , Osteoblastos/metabolismo
10.
Cell Death Dis ; 13(6): 538, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676242

RESUMO

Epigenome alteration in chondrocytes correlates with osteoarthritis (OA) development. H3K27me3 demethylase UTX regulates tissue homeostasis and deterioration, while its role was not yet studied in articulating joint tissue in situ. We now uncovered that increased UTX and H3K27me3 expression in articular chondrocytes positively correlated with human knee OA. Forced UTX expression upregulated the H3K27me3 enrichment at transcription factor Sox9 promoter, inhibiting key extracellular matrix molecules collagen II, aggrecan, and glycosaminoglycan in articular chondrocytes. Utx overexpression in knee joints aggravated the signs of OA, including articular cartilage damage, synovitis, osteophyte formation, and subchondral bone loss in mice. Chondrocyte-specific Utx knockout mice developed thicker articular cartilage than wild-type mice and showed few gonarthrotic symptoms during destabilized medial meniscus- and collagenase-induced joint injury. In vitro, Utx loss changed H3K27me3-binding epigenomic landscapes, which contributed to mitochondrial activity, cellular senescence, and cartilage development. Insulin-like growth factor 2 (Igf2) and polycomb repressive complex 2 (PRC2) core components Eed and Suz12 were, among others, functional target genes of Utx. Specifically, Utx deletion promoted Tfam transcription, mitochondrial respiration, ATP production and Igf2 transcription but inhibited Eed and Suz12 expression. Igf2 blockade or forced Eed or Suz12 expression increased H3K27 trimethylation and H3K27me3 enrichment at Sox9 promoter, compromising Utx loss-induced extracellular matrix overproduction. Taken together, UTX repressed articular chondrocytic activity, accelerating cartilage loss during OA. Utx loss promoted cartilage integrity through epigenetic stimulation of mitochondrial biogenesis and Igf2 transcription. This study highlighted a novel noncanonical role of Utx, in concert with PRC2 core components, in controlling H3K27 trimethylation and articular chondrocyte anabolism and OA development.


Assuntos
Cartilagem Articular , Histona Desmetilases , Osteoartrite do Joelho , Animais , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrogênese/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Osteoartrite do Joelho/genética , Complexo Repressor Polycomb 2/metabolismo
11.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563498

RESUMO

Increasing extracellular osmolarity 100 mOsm/kg above plasma level to the physiological levels for cartilage induces chondrogenic marker expression and the differentiation of chondroprogenitor cells. The calcineurin inhibitor FK506 has been reported to modulate the hypertrophic differentiation of primary chondrocytes under such conditions, but the molecular mechanism has remained unclear. We aimed at clarifying its role. Chondrocyte cell lines and primary cells were cultured under plasma osmolarity and chondrocyte-specific in situ osmolarity (+100 mOsm, physosmolarity) was increased to compare the activation of nuclear factor of activated T-cells 5 (NFAT5). The effects of osmolarity and FK506 on calcineurin activity, cell proliferation, extracellular matrix quality, and BMP- and TGF-ß signaling were analyzed using biochemical, gene, and protein expression, as well as reporter and bio-assays. NFAT5 translocation was similar in chondrocyte cell lines and primary cells. High supraphysiological osmolarity compromised cell proliferation, while physosmolarity or FK506 did not, but in combination increased proteoglycan and collagen expression in chondrocytes in vitro and in situ. The expression of the TGF-ß-inducible protein TGFBI, as well as chondrogenic (SOX9, Col2) and terminal differentiation markers (e.g., Col10) were affected by osmolarity. Particularly, the expression of minor collagens (e.g., Col9, Col11) was affected. The inhibition of the FK506-binding protein suggests modulation at the TGF-ß receptor level, rather than calcineurin-mediated signaling, as a cause. Physiological osmolarity promotes terminal chondrogenic differentiation of progenitor cells through the sensitization of the TGF-ß superfamily signaling at the type I receptor. While hyperosmolarity alone facilitates TGF-ß superfamily signaling, FK506 further enhances signaling by releasing the FKBP12 break from the type I receptor to improve collagenous marker expression. Our results help explain earlier findings and potentially benefit future cell-based cartilage repair strategies.


Assuntos
Inibidores de Calcineurina , Tacrolimo , Calcineurina/metabolismo , Inibidores de Calcineurina/farmacologia , Diferenciação Celular , Células Cultivadas , Condrócitos/metabolismo , Condrogênese , Tacrolimo/farmacologia , Fator de Crescimento Transformador beta/metabolismo
12.
Biomedicines ; 10(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453611

RESUMO

Osteoporosis and osteoarthritis account for the leading causes of musculoskeletal dysfunction in older adults. Senescent chondrocyte overburden, inflammation, oxidative stress, subcellular organelle dysfunction, and genomic instability are prominent features of these age-mediated skeletal diseases. Age-related intestinal disorders and gut dysbiosis contribute to host tissue inflammation and oxidative stress by affecting host immune responses and cell metabolism. Dysregulation of gut microflora correlates with development of osteoarthritis and osteoporosis in humans and rodents. Intestinal microorganisms produce metabolites, including short-chain fatty acids, bile acids, trimethylamine N-oxide, and liposaccharides, affecting mitochondrial function, metabolism, biogenesis, autophagy, and redox reactions in chondrocytes and bone cells to regulate joint and bone tissue homeostasis. Modulating the abundance of Lactobacillus and Bifidobacterium, or the ratio of Firmicutes and Bacteroidetes, in the gut microenvironment by probiotics or fecal microbiota transplantation is advantageous to suppress age-induced chronic inflammation and oxidative damage in musculoskeletal tissue. Supplementation with gut microbiota-derived metabolites potentially slows down development of osteoarthritis and osteoporosis. This review provides latest molecular and cellular insights into the biological significance of gut microorganisms and primary and secondary metabolites important to cartilage and bone integrity. It further highlights treatment options with probiotics or metabolites for modulating the progression of these two common skeletal disorders.

13.
Antioxidants (Basel) ; 11(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35204144

RESUMO

Oxidative stress is implicated in osteoarthritis, and nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway maintains redox homeostasis. We investigated whether Nrf2/ARE signaling controls SOX9. SOX9 expression in human C-28/I2 chondrocytes was measured by RT-qPCR after shRNA-mediated knockdown of Nrf2 or its antagonist the Kelch-like erythroid cell-derived protein with cap ''n'' collar homology-associated protein 1 (Keap1). To verify whether Nrf2 transcriptionally regulates SOX9, putative ARE-binding sites in the proximal SOX9 promoter region were inactivated, cloned into pGL3, and co-transfected with phRL-TK for dual-luciferase assays. SOX9 promoter activities without and with Nrf2-inducer methysticin were compared. Sox9 expression in articular chondrocytes was correlated to cartilage thickness and degeneration in wild-type (WT) and Nrf2-knockout mice. Nrf2-specific RNAi significantly decreased SOX9 expression, whereas Keap1-specific RNAi increased it. Putative ARE sites (ARE1, ARE2) were identified in the SOX9 promoter region. ARE2 mutagenesis significantly reduced SOX9 promoter activity, but ARE1 excision did not. Functional ARE2 site was essential for methysticin-mediated induction of SOX9 promoter activity. Young Nrf2-knockout mice revealed significantly lower Sox9-positive chondrocytes, and old Nrf2-knockout animals showed thinner cartilage and more cartilage degeneration. Our results suggest Nrf2 directly regulates SOX9 in articular cartilage, and Nrf2-loss can develop mild osteoarthritis at old age. Pharmacological Nrf2 induction may hold the potential to diminish age-dependent cartilage degeneration through improving SOX9 expression.

14.
Materials (Basel) ; 14(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683618

RESUMO

For orthopaedic applications, additive manufactured (AM) porous scaffolds made of absorbable metals such as magnesium, zinc or iron are of particular interest. They do not only offer the potential to design and fabricate bio-mimetic or rather bone-equivalent mechanical properties, they also do not need to be removed in further surgery. Located in a physiological environment, scaffolds made of absorbable metals show a decreasing Young's modulus over time, due to product dissolution. For magnesium-based scaffolds during the first days an increase of the smeared Young's modulus can be observed, which is mainly attributed to a forming substrate layer of degradation products on the strut surfaces. In this study, the influence of degradation products on the stiffness properties of metallic scaffolds is investigated. For this, analytical calculations and finite-element simulations are performed to study the influence of the substrate layer thickness and Young's modulus for single struts and for a new scaffold geometry with adapted polar cubic face-centered unit cells with vertical struts (f2cc,z). The finite-element model is further validated by compression tests on AM scaffolds made from Zn1Mg (1 wt% Mg). The results show that even low thicknesses and Young's moduli of the substrate layer significantly increases the smeared Young's modulus under axial compression.

15.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502056

RESUMO

Skeletal tissue involves systemic adipose tissue metabolism and energy expenditure. MicroRNA signaling controls high-fat diet (HFD)-induced bone and fat homeostasis dysregulation remains uncertain. This study revealed that transgenic overexpression of miR-29a under control of osteocalcin promoter in osteoblasts (miR-29aTg) attenuated HFD-mediated body overweight, hyperglycemia, and hypercholesterolemia. HFD-fed miR-29aTg mice showed less bone mass loss, fatty marrow, and visceral fat mass together with increased subscapular brown fat mass than HFD-fed wild-type mice. HFD-induced O2 underconsumption, respiratory quotient repression, and heat underproduction were attenuated in miR-29aTg mice. In vitro, miR-29a overexpression repressed transcriptomic landscapes of the adipocytokine signaling pathway, fatty acid metabolism, and lipid transport, etc., of bone marrow mesenchymal progenitor cells. Forced miR-29a expression promoted osteogenic differentiation but inhibited adipocyte formation. miR-29a signaling promoted brown/beige adipocyte markers Ucp-1, Pgc-1α, P2rx5, and Pat2 expression and inhibited white adipocyte markers Tcf21 and Hoxc9 expression. The microRNA also reduced peroxisome formation and leptin expression during adipocyte formation and downregulated HFD-induced leptin expression in bone tissue. Taken together, miR-29a controlled leptin signaling and brown/beige adipocyte formation of osteogenic progenitor cells to preserve bone anabolism, which reversed HFD-induced energy underutilization and visceral fat overproduction. This study sheds light on a new molecular mechanism by which bone integrity counteracts HFD-induced whole-body fat overproduction.


Assuntos
Gordura Intra-Abdominal/metabolismo , Leptina/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoporose/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Dieta Hiperlipídica/efeitos adversos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Osteoblastos/citologia , Osteoporose/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Peroxissomos/metabolismo , Receptores Purinérgicos P2X5/genética , Receptores Purinérgicos P2X5/metabolismo , Simportadores/genética , Simportadores/metabolismo , Termogênese , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
16.
Antioxidants (Basel) ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34573026

RESUMO

Bone-forming cells build mineralized microstructure and couple with bone-resorbing cells, harmonizing bone mineral acquisition, and remodeling to maintain bone mass homeostasis. Mitochondrial glycolysis and oxidative phosphorylation pathways together with ROS generation meet the energy requirement for bone-forming cell growth and differentiation, respectively. Moderate mechanical stimulations, such as weight loading, physical activity, ultrasound, vibration, and electromagnetic field stimulation, etc., are advantageous to bone-forming cell activity, promoting bone anabolism to compromise osteoporosis development. A plethora of molecules, including ion channels, integrins, focal adhesion kinases, and myokines, are mechanosensitive and transduce mechanical stimuli into intercellular signaling, regulating growth, mineralized extracellular matrix biosynthesis, and resorption. Mechanical stimulation changes mitochondrial respiration, biogenesis, dynamics, calcium influx, and redox, whereas mechanical disuse induces mitochondrial dysfunction and oxidative stress, which aggravates bone-forming cell apoptosis, senescence, and dysfunction. The control of the mitochondrial biogenesis activator PGC-1α by NAD+-dependent deacetylase sirtuins or myokine FNDC/irisin or repression of oxidative stress by mitochondrial antioxidant Nrf2 modulates the biophysical stimulation for the promotion of bone integrity. This review sheds light onto the roles of mechanosensitive signaling, mitochondrial dynamics, and antioxidants in mediating the anabolic effects of biophysical stimulation to bone tissue and highlights the remedial potential of mitochondrial biogenesis regulators for osteoporosis.

17.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502380

RESUMO

Biophysical stimulation alters bone-forming cell activity, bone formation and remodeling. The effect of piezoelectric microvibration stimulation (PMVS) intervention on osteoporosis development remains uncertain. We investigated whether 60 Hz, 120 Hz, and 180 Hz PMVS (0.05 g, 20 min/stimulation, 3 stimulations/week for 4 consecutive weeks) intervention affected bone integrity in ovariectomized (OVX) mice or osteoblastic activity. PMVS (120 Hz)-treated OVX mice developed fewer osteoporosis conditions, including bone mineral density loss and trabecular microstructure deterioration together with decreased serum resorption marker CTX-1 levels, as compared to control OVX animals. The biomechanical strength of skeletal tissue was improved upon 120 Hz PMVS intervention. This intervention compromised OVX-induced sparse trabecular bone morphology, osteoblast loss, osteoclast overburden, and osteoclast-promoting cytokine RANKL immunostaining and reversed osteoclast inhibitor OPG immunoreactivity. Osteoblasts in OVX mice upon PMVS intervention showed strong Wnt3a immunoreaction and weak Wnt inhibitor Dkk1 immunostaining. In vitro, PMVS reversed OVX-induced loss in von Kossa-stained mineralized nodule formation, Runx2, and osteocalcin expression in primary bone-marrow stromal cells. PMVS also promoted mechanoreceptor Piezo1 expression together with increased microRNA-29a and Wnt3a expression, whereas Dkk1 rather than SOST expression was repressed in MC3T3-E1 osteoblasts. Taken together, PMVS intervention promoted Piezo1, miR-29a, and Wnt signaling to upregulate osteogenic activity and repressed osteoclastic bone resorption, delaying estrogen deficiency-induced loss in bone mass and microstructure. This study highlights a new biophysical remedy for osteoporosis.


Assuntos
Osteoblastos/metabolismo , Osteoporose/terapia , Terapia por Ultrassom/métodos , Animais , Fenômenos Biomecânicos , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Calcificação Fisiológica , Diferenciação Celular/efeitos dos fármacos , Estrogênios/metabolismo , Feminino , Canais Iônicos/metabolismo , Canais Iônicos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/fisiologia , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose/metabolismo , Ovariectomia , Transdução de Sinais , Ondas Ultrassônicas , Proteína Wnt3A/metabolismo
18.
Antioxidants (Basel) ; 10(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439496

RESUMO

Senescent osteoblast overburden accelerates bone mass loss. Little is understood about microRNA control of oxidative stress and osteoblast senescence in osteoporosis. We revealed an association between microRNA-29a (miR-29a) loss, oxidative stress marker 8-hydroxydeoxyguanosine (8-OHdG), DNA hypermethylation marker 5-methylcystosine (5mC), and osteoblast senescence in human osteoporosis. miR-29a knockout mice showed low bone mass, sparse trabecular microstructure, and osteoblast senescence. miR-29a deletion exacerbated bone loss in old mice. Old miR-29a transgenic mice showed fewer osteoporosis signs, less 5mC, and less 8-OHdG formation than age-matched wild-type mice. miR-29a overexpression reversed age-induced senescence and osteogenesis loss in bone-marrow stromal cells. miR-29a promoted transcriptomic landscapes of redox reaction and forkhead box O (FoxO) pathways, preserving oxidation resistance protein-1 (Oxr1) and FoxO3 in old mice. In vitro, miR-29a interrupted DNA methyltransferase 3b (Dnmt3b)-mediated FoxO3 promoter methylation and senescence-associated ß-galactosidase activity in aged osteoblasts. Dnmt3b inhibitor 5'-azacytosine, antioxidant N-acetylcysteine, or Oxr1 recombinant protein attenuated loss in miR-29a and FoxO3 to mitigate oxidative stress, senescence, and mineralization matrix underproduction. Taken together, miR-29a promotes Oxr1, compromising oxidative stress and FoxO3 loss to delay osteoblast aging and bone loss. This study sheds light on a new antioxidation mechanism by which miR-29a protects against osteoblast aging and highlights the remedial effects of miR-29a on osteoporosis.

19.
Antioxid Redox Signal ; 35(5): 357-376, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-33678001

RESUMO

Significance: Osteonecrosis (ON) is characterized by bone tissue death due to disturbance of the nutrient artery. The detailed process leading to the necrotic changes has not been fully elucidated. Clinically, high-dose corticosteroid therapy is one of the main culprits behind osteonecrosis of the femoral head (ONFH). Recent Advances: Numerous studies have proposed that such ischemia concerns various intravascular mechanisms. Of all reported risk factors, the involvement of oxidative stress in the irreversible damage suffered by bone-related and vascular endothelial cells during ischemia simply cannot be overlooked. Several articles also have sought to elucidate oxidative stress in relation to ON using animal models or in vitro cell cultures. Critical Issues: However, as far as we know, antioxidant monotherapy has still not succeeded in preventing ONFH in humans. To provide this desideratum, we herein summarize the current knowledge about the influence of oxidative stress on ON, together with data about the preventive effects of administering antioxidants in corticosteroid-induced ON animal models. Moreover, oxidative stress is counteracted by nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent cytoprotective network through regulating antioxidant expressions. Therefore, we also describe Nrf2 regulation and highlight its role in the pathology of ON. Future Directions: This is a review of all available literature to date aimed at developing a deeper understanding of the pathological mechanism behind ON from the perspective of oxidative stress. It may be hoped that this synthesis will spark the development of a prophylactic strategy to benefit corticosteroid-associated ONFH patients. Antioxid. Redox Signal. 35, 357-376.


Assuntos
Corticosteroides/farmacologia , Antioxidantes/farmacologia , Osso e Ossos/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Osteonecrose/dietoterapia , Osso e Ossos/metabolismo , Sistema Cardiovascular/metabolismo , Humanos , Osteonecrose/metabolismo , Estresse Oxidativo/efeitos dos fármacos
20.
Antioxidants (Basel) ; 9(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882839

RESUMO

Compromised autophagy and mitochondrial dysfunction downregulate chondrocytic activity, accelerating the development of osteoarthritis (OA). Irisin, a cleaved form of fibronectin type III domain containing 5 (FNDC5), regulates bone turnover and muscle homeostasis. Little is known about the effect of Irisin on chondrocytes and the development of osteoarthritis. This study revealed that human osteoarthritic articular chondrocytes express decreased level of FNDC5 and autophagosome marker LC3-II but upregulated levels of oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) and apoptosis. Intra-articular administration of Irisin further alleviated symptoms of medial meniscus destabilization, like cartilage erosion and synovitis, while improved the gait profiles of the injured legs. Irisin treatment upregulated autophagy, 8-OHdG and apoptosis in chondrocytes of the injured cartilage. In vitro, Irisin improved IL-1ß-mediated growth inhibition, loss of specific cartilage markers and glycosaminoglycan production by chondrocytes. Irisin also reversed Sirt3 and UCP-1 pathways, thereby improving mitochondrial membrane potential, ATP production, and catalase to attenuated IL-1ß-mediated reactive oxygen radical production, mitochondrial fusion, mitophagy, and autophagosome formation. Taken together, FNDC5 loss in chondrocytes is correlated with human knee OA. Irisin repressed inflammation-mediated oxidative stress and extracellular matrix underproduction through retaining mitochondrial biogenesis, dynamics and autophagic program. Our analyses shed new light on the chondroprotective actions of this myokine, and highlight the remedial effects of Irisin on OA development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...