Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 46(18): 6013-6023, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28426035

RESUMO

Semiconductor-based photocatalysis is a green method for the removal of toxic organic pollutants by decomposition into harmless products. However, traditional single-component semiconductors are unable to reach high degradation efficiencies due to excessive photo charge carrier recombination. The use of hybrid nanocomposite photocatalysts is a promising strategy for overcoming this problem by reducing recombination as well as ensuring that large amounts of solar energy are harvested. Herein, a novel visible-light-active hybrid nanocomposite, BiOI/MIL-88B(Fe), was successfully synthesized through a simple precipitation method. In the BiOI/MIL-88B(Fe) composite, both BiOI and MIL-88B(Fe) have improved charge carrier separation and reduced recombination via a simple Z-scheme mechanism. Photocatalytic degradation of the pollutant RhB was carried out during irradiation of the as-synthesized composites with simulated solar light, and the BiOI/MIL-88B(Fe) (2 wt%) composite was found to exhibit the highest photocatalytic activity among the composites. In addition, colorless phenol and ciprofloxacin (CIP) degradation experiments were also performed to confirm the visible light photocatalytic performance of the BiOI/MIL-88B(Fe) hybrid nanocomposite. Scavenger experiments, PL analysis, NBT transformations, and TA-PL experiments all supported the proposed Z-scheme mechanism of the BiOI/MIL-88B(Fe) composite photocatalyst. Moreover, simple separation from solution provides this 3D composite with good reusability and long-term stability.

2.
Phys Chem Chem Phys ; 18(36): 24984-24993, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27722571

RESUMO

An oxygen-vacancy rich, bismuth oxyiodide-based Z-scheme 3D hierarchical MoS2/BiOI/AgI ternary nanocomposite photocatalyst was fabricated using a simple precipitation process in ethylene glycol and water. The presence of oxygen-vacancies in BiOI and the two-dimensional nature of molybdenum disulfides in the composite prolongs the charge carrier lifetime through a Z-scheme system and enhances the performance of the photocatalyst for the degradation of rhodamine B. On the basis of efficient separation of photoexcited electron-hole pairs, a mechanism is proposed whereby MoS2 and oxygen vacancy states increase charge carrier lifetimes and improve the photocatalytic activity. The Z-scheme mechanism of the photocatalysis is consistent with the results of static and time-resolved photoluminescence, scavenging, and terephthalic acid photoluminescence experiments. Among the as-synthesized photocatalysts, the one containing 2 wt% of MoS2 in a composite of MoS2/BiOI/AgI exhibited the highest photocatalytic activity towards rhodamine B degradation, and its activity was 7 and 16 times higher than that of BiOI/AgI and BiOI, respectively. Degradation of phenol, the colorless model pollutant, was studied to confirm the visible-light photocatalytic performance of the MoS2/BiOI/AgI composite. This easily fabricated Z-scheme based MoS2/BiOI/AgI composite exhibits promising photocatalytic activity and will be useful for potential applications in energy and environmental areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...