Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Molecules ; 28(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375309

RESUMO

Non-heme Fe monooxygenases activate C-H bonds using intermediates with high-spin FeIV-oxido centers. To mimic these sites, a new tripodal ligand [pop]3- was prepared that contains three phosphoryl amido groups that are capable of stabilizing metal centers in high oxidation states. The ligand was used to generate [FeIVpop(O)]-, a new FeIV-oxido complex with an S = 2 spin ground state. Spectroscopic measurements, which included low-temperature absorption and electron paramagnetic resonance spectroscopy, supported the assignment of a high-spin FeIV center. The complex showed reactivity with benzyl alcohol as the external substrate but not with related compounds (e.g., ethyl benzene and benzyl methyl ether), suggesting the possibility that hydrogen bonding interaction(s) between the substrate and [FeIVpop(O)]- was necessary for reactivity. These results exemplify the potential role of the secondary coordination sphere in metal-mediated processes.

2.
J Inorg Biochem ; 212: 111253, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32949987

RESUMO

We report the synthesis and biomimetic activity of a family of model complexes with relevance to acireductone dioxygenase (ARD), an enzyme that displays dual function based on metal identity found in the methionine salvage pathway (MSP). Three complexes with related structural motifs were synthesized and characterized derived from phenolate, and pyridine N4O Schiff-base ligands. They display pseudo-octahedral Ni(II)-N4O ligand coordination with water at the sixth site, in close alignment to the structure in the resting state of ARD. The three featured complexes exhibit carbon­carbon bond cleavage activation of lithium acetylacetonate, which was used as a model enzyme substrate. Computationally derived mechanistic routes for the observed reactivity consistent with experimental conditions are herein proposed. The mechanism suggests the possibility of Ni(II)-substrate interactions, followed by oxygen insertion. These results constitute only the third functional model system of ARD, in an attempt to further advance biomimetic contributions to the ongoing debate of ARD's unique metal mediated, regioselective oxidative cleavage.


Assuntos
Dioxigenases/metabolismo , Biomimética , Domínio Catalítico , Teoria da Densidade Funcional , Dioxigenases/química , Modelos Moleculares , Níquel/química , Oxirredução , Estudo de Prova de Conceito , Conformação Proteica , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...