Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889274

RESUMO

MOTIVATION: Deep learning models have achieved remarkable success in a wide range of natural-world tasks, such as vision, language, and speech recognition. These accomplishments are largely attributed to the availability of open-source large-scale datasets. More importantly, pre-trained foundational modellearnings exhibit a surprising degree of transferability to downstream tasks, enabling efficient learning even with limited training examples. However, the application of such natural-domain models to the domain of tiny Cryo-Electron Tomography (Cryo-ET) images has been a relatively unexplored frontier. This research is motivated by the intuition that 3D Cryo-ET voxel data can be conceptually viewed as a sequence of progressively evolving video frames. RESULTS: Leveraging the above insight, we propose a novel approach that involves the utilization of 3D models pre-trained on large-scale video datasets to enhance Cryo-ET subtomogram classification. Our experiments, conducted on both simulated and real Cryo-ET datasets, reveal compelling results. The use of video initialization not only demonstrates improvements in classification accuracy but also substantially reduces training costs. Further analyses provide additional evidence of the value of video initialization in enhancing subtomogram feature extraction. Additionally, we observe that video initialization yields similar positive effects when applied to medical 3D classification tasks, underscoring the potential of cross-domain knowledge transfer from video-based models to advance the state-of-the-art in a wide range of biological and medical data types. AVAILABILITY AND IMPLEMENTATION: https://github.com/xulabs/aitom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...