Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Neurosci ; : 1-13, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38626288

RESUMO

BACKGROUND: Alzheimer's disease (AD) is one of the most challenging and prevalent neurodegenerative disorder globally with a rising prevalence, characterized by progressive cognitive decline, memory loss, and behavioural changes. Current research aims to determine the nootropic and anti-amnesic effect of Empagliflozin (EMPA) against scopolamine-induced amnesia in rats, by modulating the cholinergic and N-Methyl D-Aspartate (NMDA) receptors. METHODS: Rats were treated once daily with an EMPA (5 and 10 mg/kg) and donepezil (2.5 mg/kg) for successive 26 days. During the final 13 days of treatment, a daily injection of scopolamine (1 mg/kg) was administered to induce cognitive deficits. RESULTS: EMPA was found to be significantly reduce escape latency, increase time spent in the target quadrant, and enhanced the number of target zone crossings in the Morris water maze (MWM) test, indicating improved spatial memory. Moreover, EMPA increased the recognition index and the number of spontaneous alternations in the novel object recognition (NOR) and Y-maze tests, respectively, suggesting enhanced memory. DISCUSSION: Interestingly doses of EMPA (5 mg/kg, 10 mg/kg) exhibited memory-enhancing effects even in the absence of scopolamine-induced impairment. Biochemical analysis revealed that EMPA elevated the levels of glutathione (GSH), a potent antioxidant, while decreasing lipid peroxidation (LPO) activity and increasing catalase (CAT) levels, indicating its antioxidative properties. Interestingly molecular docking studies revealed that EMPA fit perfectly in the active sites of M1 muscarinic acetylcholine (mACh) and NMDA receptors. These results indicated that the nootropic and antiamnesic effect of EMPA is possibly mediated via M1 and NMDA receptors and might be a remedy for AD.

2.
Int J Neurosci ; : 1-11, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801395

RESUMO

OBJECTIVES: To study the pharmacological interactions between agmatine and gamma aminobutyric acid (GABA) modulatory agents in the regulation of anxiety-like behavior in rats. MATERIALS AND METHODS: Male Wistar rats were treated drugs per se or in combination and 15 min after last injection were subjected to elevated plus-maze (EPM) test. Anxiety-like behavior was evaluated by measuring behavioral conventional readout, open arm activity (duration and/or entries) for 5-minute duration. RESULTS: Acute intra-central amygdala (CeA) injection of agmatine (0.1-0.6 µmol/site/rat), muscimol (0.25-1 nmol/site/rat), diazepam (5-20 µg/site/rat) and allopregnanolone (2-8 µg/site/rat) increased open arm entries of the rats in EPM suggesting anxiolytic effect in dose dependent manner. Moreover, the anxiolytic effect at subeffective dose of agmatine (0.1 µmol/site/rat) was potentiated by subeffective dose of muscimol (0.25 nmol/site/rat), diazepam (5 µg/site/rat) and allopregnanolone (4 µg/site/rat). Whereas, pretreatment with GABAA receptor antagonist, bicuculline (10 ng/site/rat) blocked the anxiolytic effect of agmatine and its synergistic effect of agmatine plus muscimol. Similarly, benzodiazepine (BZD) receptor antagonist, flumazenil (15 µg/site/rat) and GABA allosteric modulator antagonist, RO 15-45 13 (10 µg/site/rat) reduced the anxiolytic effect of agmatine, given alone and with diazepam and allopregnanolone, respectively. CONCLUSION: These results indicated that anxiolytic effect of agmatine is medicated via GABAergic mechanisms, probably conciliated by the GABAA receptor subtypes. Modulation of interplay between agmatine and GABAA receptor activity might be a pertinent solution for the regulation of anxiety.

3.
J Biomol Struct Dyn ; : 1-19, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811574

RESUMO

Targeting Hec1/Nek2 is considered as crucial target for cancer treatment due to its significant role in cell proliferation. In pursuit of this, a series of twenty-five 2-aminothiazoles derivatives, along with their Hec1/Nek2 inhibitory activities were subjected to QSAR studies utilizing QSARINS software. The significant three descriptor QSAR model was generated, showing noteworthy statistical parameters: a correlation coefficient of cross validation leave one out (Q2LOO) = 0.7965, coefficient of determination (R2) = 0.8436, (R2ext) = 0.6308, cross validation leave many out (Q2LMO) = 0.7656, Concordance Correlation Coefficient (CCCCV = 0.8875), CCCtr = 0.9151, and CCCext = 0.0.7241. The descriptors integral to generated QSAR model include Moreau-Broto autocorrelation, which represents the spatial autocorrelation of a property along the molecular graph's topological structure (ATSC1i), Moran autocorrelation at lag 8, which is weighted by charges (MATS8c) and RPSA representing the total molecular surface area. It was noted that these descriptors significantly influence Hec1/Nek2 inhibitory activity of 2-aminothiazoles derivatives. New lead molecules were designed and predicted for their Hec1/Nek2 inhibitory activity based on the developed three descriptor model. Further, the ADMET and Molecular docking studies were carried out for these designed molecules. The three molecules were selected based on their docking score and further subjected for MD simulation studies. Post-MD MM-GBSA analysis were also performed to predicted the free binding energies of molecules. The study helped us to understand the key interactions between 2-aminothiazoles derivatives and Hec1/Nek2 protein that may be necessary to develop new lead molecules against cancer.Communicated by Ramaswamy H. Sarma.

4.
ACS Omega ; 8(28): 25195-25208, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483203

RESUMO

Atorvastatin (ATV), a lipid-lowering agent, has low oral bioavailability due to its poor water solubility, permeability, and low dissolution rate. Therefore, pentaerythritol-EudragitRS100 co-processed excipients (PECE) were synthesized, and their feasibility as solid dispersion carriers (ATV-PECE-SD) for improving the solubility, permeability, and dissolution rate of ATV was explored. Solid dispersions were assessed in terms of particle size and zeta potential, and solubility, in vitro dissolution, and ex vivo permeation studies were studied. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) were used as characterization tools. ATV-PECE-SD3 (1:4) formulations exhibited a small particle size with high stability. Physicochemical evaluation evidenced the formation of solid dispersion due to the involvement of weak electrostatic interaction between the polar functional groups of ATV and PECE carriers. ATV-PECE-SD3 (1:4) significantly enhanced the water solubility by ∼43-fold compared to pure ATV. In vitro dissolution studies showed that optimized formulation enhanced the dissolution rate of ATV compared to pure ATV. Ex vivo permeation results revealed that ATV-PECE-SD3 (1:4) enhanced the permeation rate of ATV compared to pure ATV. The optimized formulations significantly improved the dissolution rate of ATV in the fed state due to the food effect and micelle formation mechanism compared to the fasted state. The study concludes that co-processed excipients could be used as promising solid dispersion carriers to enhance the aqueous solubility, permeability, and dissolution rate of ATV.

5.
Proc Natl Acad Sci U S A ; 119(26): e2204084119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727972

RESUMO

Discovery of deafness genes and elucidating their functions have substantially contributed to our understanding of hearing physiology and its pathologies. Here we report on DNA variants in MINAR2, encoding membrane integral NOTCH2-associated receptor 2, in four families underlying autosomal recessive nonsyndromic deafness. Neurologic evaluation of affected individuals at ages ranging from 4 to 80 y old does not show additional abnormalities. MINAR2 is a recently annotated gene with limited functional understanding. We detected three MINAR2 variants, c.144G > A (p.Trp48*), c.412_419delCGGTTTTG (p.Arg138Valfs*10), and c.393G > T, in 13 individuals with congenital- or prelingual-onset severe-to-profound sensorineural hearing loss (HL). The c.393G > T variant is shown to disrupt a splice donor site. We show that Minar2 is expressed in the mouse inner ear, with the protein localizing mainly in the hair cells, spiral ganglia, the spiral limbus, and the stria vascularis. Mice with loss of function of the Minar2 protein (Minar2tm1b/tm1b) present with rapidly progressive sensorineural HL associated with a reduction in outer hair cell stereocilia in the shortest row and degeneration of hair cells at a later age. We conclude that MINAR2 is essential for hearing in humans and mice and its disruption leads to sensorineural HL. Progressive HL observed in mice and in some affected individuals and as well as relative preservation of hair cells provides an opportunity to interfere with HL using genetic therapies.


Assuntos
Perda Auditiva Neurossensorial , Receptor Notch2 , Receptores de Superfície Celular , Animais , Perda Auditiva Neurossensorial/genética , Humanos , Mutação com Perda de Função , Camundongos , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Superfície Celular/genética , Estereocílios/metabolismo
6.
Bioorg Med Chem Lett ; 67: 128747, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35476959

RESUMO

For developing novel therapeutic agents with good anticancer activities, a series of novel pyridine-pyrimidine hybrid phosphonate derivatives4(a-q) were synthesized by the Kabachnik-Fields method using CAN as catalyst. The compound 4o exhibited the most potent anticancer activity with an IC50 value of 13.62 µM, 17.49 µM, 5.81 µM, 1.59 µM and 2.11 µM against selected cancer cell lines A549, Hep-G2, HeLa, MCF-7, and HL-60, respectively. Compound 4o displayed seven times more selectivity towards Hep-G2 cancer cell lines compared to the human normal hepatocyte cell line LO2 (IC50 value 95.33 µM). Structure-Activity Relationship (SAR) studies were conducted on the variation in the aromatic ring (five-membered heterocyclic ring, six-membered heterocyclic ring) and the variation of substituents on the phenyl ring (electron donating groups, electron withdrawing groups). Furthermore, the mechanism of anticancer activity was clarified by further explorations in bioactivity by using in vitro aurora kinase inhibitory activity and molecular docking studies. The results showed that the compound 4o at IC50concentrationdemonstrated distinctive morphological changes such as cell detachment, cell wall deformation, cell shrinkage and reduced number of viable cells in cancer cell lines. Compound 4o induced early apoptosis and late apoptosis of 27.7% and 6.1% respectively.


Assuntos
Antineoplásicos , Organofosfonatos , Antineoplásicos/farmacologia , Aurora Quinases , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Organofosfonatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Relação Estrutura-Atividade
7.
AAPS PharmSciTech ; 23(4): 99, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338414

RESUMO

Isoniazid (INH) is a first-line chemotherapeutic drug employed in the management of tuberculosis. However, its extensive first-pass metabolism, short-life life, and low oral bioavailability confined its medical application. Therefore, the calcium ion-alginate-piperine microspheres (INH-CaSP Ms) was prepared to enhance encapsulation efficiency, controlled delivery, and oral bioavailability of INH. The INH-CaSP Ms was developed using a modified emulsification method and optimized via Box-Behnken design (BBD). Optimized INH-CaSP Ms were characterized for encapsulation efficiency, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), bio-adhesion, in vitro dissolution, ex vivo permeation, and oral bioavailability studies. Characterization studies confirmed the formation of microspheres. The INH-CaSP Ms showed spherical microspheres with enhanced encapsulation efficiency (~ 93.03 ± 1.54% w/w). The optimized INH-CaSP Ms exhibited higher bio-adhesion around (~ 81.41 ± 1.31%). The INH-CaSP Ms enhanced the dissolution rate of INH (~ 57%) compared to pure INH (~ 57%) and INH-SA Ms (~ 81%) in simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.4). The same formulations improved the permeation rate of INH (~ 90%) compared to pure INH (~ 55%) and INH-SA Ms (~ 80%). The oral bioavailability results indicated that INH-CaSP Ms appreciably improved the oral bioavailability of INH via increasing the Cmax, Tmax, t1/2, and AUC parameters compared to pure INH. The study demonstrates that the development of INH-CaSP Ms via cross-linked coordinate bond interaction between divalent cation calcium ion-alginate complex and anion piperine bio-enhancer is an effective approach for enhancing the encapsulation efficiency, bio-adhesion, controlled release, and oral bioavailability of INH.


Assuntos
Cálcio , Isoniazida , Alginatos/química , Alcaloides , Benzodioxóis , Disponibilidade Biológica , Microesferas , Piperidinas , Alcamidas Poli-Insaturadas , Espectroscopia de Infravermelho com Transformada de Fourier
8.
AAPS PharmSciTech ; 22(3): 94, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33683493

RESUMO

Hydrochlorothiazide (HTZ) is a first-line drug used in the treatment of hypertension suffered from low oral bioavailability due to poor aqueous solubility and permeability. Hence, lyophilized egg white protein-based solid dispersion (HTZ-EWP SD) was developed to explore its feasibility as a solid dispersion carrier for enhanced aqueous solubility and permeability of HTZ. The HTZ-EWP SD was prepared using the kneading method. HTZ-EWP SD was characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transforms infrared spectroscopy (FT-IR), powder X-ray diffractometer (PXRD), solubility, in vitro dissolution, and ex vivo permeation studies. The physico-chemical evaluation suggested the formation of the solid dispersion. Optimized HTZ-EWP SD4 drastically enhanced (~32-fold) aqueous solubility (~16.12 ± 0.08 mg/mL) over to pure HTZ (~ 0.51 ± 0.03 mg/mL). The dissolution study in phosphate buffer media (pH 6.8) revealed that HTZ-EWP SD4 significantly enhanced the release rate of HTZ (~ 87 %) over to HTZ (~ 25 %). The permeation rate of HTZ from optimized HTZ-EWP SD4 was enhanced significantly (~ 84 %) compared to pure HTZ (~ 24 %). Optimized HTZ-EWP-SD4 enhanced the rate of HTZ dissolution (~ 86 %) in FeSSIF (fed state simulated intestinal fluid), compared to a low dissolution rate (~ 72 %) in FaSSIF (fasted state simulated intestinal fluid) state after 2-h study. Obtained results conclude that lyophilized egg white protein can be utilized as an alternative solid dispersion carrier for enhancing the solubility and permeability of HTZ.


Assuntos
Diuréticos/administração & dosagem , Diuréticos/química , Portadores de Fármacos/química , Proteínas do Ovo/química , Hidroclorotiazida/administração & dosagem , Hidroclorotiazida/química , Disponibilidade Biológica , Soluções Tampão , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Permeabilidade , Solubilidade , Água
9.
Int J Biol Macromol ; 171: 288-307, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33418046

RESUMO

A novel nanocarrier system of phospholipids complex loaded chitosan nanoparticles (FAPLC CNPs) was developed to improve the oral bioavailability and antioxidant potential of FA. FAPLC CNPs were optimized using a Box-Behnken Design (BBD). FAPLC CNPs were characterized using differential scanning calorimetry, Fourier transforms infrared spectroscopy, powder x-ray diffractometry, proton nuclear magnetic resonance, solubility, in vitro dissolution, ex vivo permeation, and in vivo antioxidant activity in carbon tetrachloride (CCl4)-induced albino rat model. The characterization studies indicated a formation of the complex as well as FAPLC CNPs. The FAPLC CNPs exhibited a lower particle size ~123.27 nm, PDI value ~0.31, and positive zeta potential ~32 mV respectively. Functional characterization studies revealed a significant improvement in the aqueous solubility, dissolution, and permeation rate of FAPLC and FAPLC CNPs compared to FA and FA CNPs. The FAPLC CNPs showed significant enhancement of in vivo antioxidant activity of FA by restoring the elevated marker enzymes in the CCl4-intoxicated rat model compared to FA CNPs. Moreover, the pharmacokinetic analysis demonstrated a significant enhancement of oral bioavailability of FA from FAPLC CNPs compared to FA CNPs. These findings show that FAPLC CNPs could be used as an effective nanocarrier for improving the oral delivery of FA.


Assuntos
Antioxidantes/química , Quitosana/química , Ácidos Cumáricos/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/química , Fosfolipídeos/química , Administração Oral , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Disponibilidade Biológica , Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Técnicas de Química Analítica , Quitosana/administração & dosagem , Quitosana/farmacocinética , Ácidos Cumáricos/farmacocinética , Preparações de Ação Retardada , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Feminino , Absorção Intestinal , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Microscopia Eletrônica de Varredura , Modelos Químicos , Nanopartículas/administração & dosagem , Tamanho da Partícula , Fosfolipídeos/administração & dosagem , Fosfolipídeos/farmacocinética , Ratos , Ratos Wistar , Solubilidade , Eletricidade Estática
10.
Drug Dev Ind Pharm ; 46(12): 1988-1999, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33026260

RESUMO

PURPOSE: Targeted delivery of drugs at appropriate concentrations to ocular tissues is required to avoid wastage. Hence, advanced systems that maximize the release of poorly soluble drugs and deliver them at ocular sites must be designed. METHODS: In this study, Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol-graft copolymer) was selected as a solubilizer as well as film former for preparing ocular inserts and polyethylene glycol 400 (PEG-400) as a plasticizer. On the basis of an initial phase solubility study, the maximum concentration of Soluplus® possible was used for developing the inserts. An optimized formulation was obtained using a 32-factorial design. Two factors at three levels were used to design the ocular inserts. Soluplus® (X 1) and the plasticizer, PEG-400 (X 2), were set as the independent variables at various levels, and the Rel4h (drug release in 4 h, Y 1) and tensile strength (Y 2) were set as the dependent variables. A pre-formulation study was conducted to select suitable materials. RESULTS: Various physico-chemical parameters of the optimized formulation, including the tensile strength and folding endurance, were studied using FT-IR, DSC, XRD, and SEM. An in vitro dissolution study was conducted to determine the amount of drug released. There was no redness, swelling, or watering of the rabbit eye. CONCLUSION: It was concluded that the ocular inserts of the poorly soluble nepafenac developed using a graft-co-polymer enhanced the solubility and utilization of the drug for a prolonged period.


Assuntos
Polietilenoglicóis/química , Polímeros , Polivinil , Animais , Liberação Controlada de Fármacos , Dor Pós-Operatória , Coelhos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...