Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4900, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851775

RESUMO

Excitation energy transfer (EET) is a key photoinduced process in biological chromophoric assemblies. Here we investigate the factors which can drive EET into efficient ultrafast sub-ps regimes. We demonstrate how a coherent transport of electronic population could facilitate this in water solvated NADH coenzyme and uncover the role of an intermediate dark charge-transfer state. High temporal resolution ultrafast optical spectroscopy gives a 54±11 fs time constant for the EET process. Nonadiabatic quantum dynamical simulations computed through the time-evolution of multidimensional wavepackets suggest that the population transfer is mediated by photoexcited molecular vibrations due to strong coupling between the electronic states. The polar aqueous solvent environment leads to the active participation of a dark charge transfer state, accelerating the vibronically coherent EET process in favorably stacked conformers and solvent cavities. Our work demonstrates how the interplay of structural and environmental factors leads to diverse pathways for the EET process in flexible heterodimers and provides general insights relevant for coherent EET processes in stacked multichromophoric aggregates like DNA strands.


Assuntos
Transferência de Energia , NAD , NAD/química , NAD/metabolismo , Teoria Quântica , Água/química
2.
Photochem Photobiol ; 100(2): 443-452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356286

RESUMO

Time-dependent density functional theory (TD-DFT) and multiconfigurational second-order perturbation theory (CASPT2) are two of the most widely used methods to investigate photoinduced dynamics in DNA-based systems. These methods sometimes give diverse dynamics in physiological environments usually modeled by quantum mechanics/molecular mechanics (QM/MM) protocol. In this work, we demonstrate for the uridine test case that the underlying topology of the potential energy surfaces of electronic states involved in photoinduced relaxation is similar in both electronic structure methods. This is verified by analyzing surface-hopping dynamics performed at the QM/MM level on aqueous solvated uridine at TD-DFT and CASPT2 levels. By constraining the dynamics to remain on π π * state we observe similar fluctuations in energy and relaxation lifetimes in surface-hopping dynamics in both TD-DFT and experimentally validated CASPT2 methods. This finding calls for a systematic comparison of the ES potential energy surfaces of DNA and RNA nucleosides at the single- and multi-reference levels of theory. The anomalous long excited state lifetime at the TD-DFT level is explained by n π * trapping due to the tendency of TD-DFT in QM/MM schemes with electrostatic embedding to underestimate the energy of the π π * state leading to a wrong π π * / n π * energetic order. A study of the FC energetics suggests that improving the description of the surrounding environment through polarizable embedding or by the expansion of QM layer with hydrogen-bonded waters helps restore the correct state order at TD-DFT level. Thus by combining TDDFT with an accurate modeling of the environment, TD-DFT is positioned as the standout protocol to model photoinduced dynamics in DNA-based aggregates and multimers.


Assuntos
Eletrônica , Teoria Quântica , Teoria da Densidade Funcional , DNA , Uridina
3.
J Chem Theory Comput ; 19(20): 6933-6991, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37216210

RESUMO

The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.

4.
J Am Chem Soc ; 144(28): 12884-12892, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35796759

RESUMO

By combining UV transient absorption spectroscopy with sub-30-fs temporal resolution and CASPT2/MM calculations, we present a complete description of the primary photoinduced processes in solvated tryptophan. Our results shed new light on the role of the solvent in the relaxation dynamics of tryptophan. We unveil two consecutive coherent population transfer events involving the lowest two singlet excited states: a sub-50-fs nonadiabatic La → Lb transfer through a conical intersection and a subsequent 220 fs reverse Lb → La transfer due to solvent-assisted adiabatic stabilization of the La state. Vibrational fingerprints in the transient absorption spectra provide compelling evidence of a vibronic coherence established between the two excited states from the earliest times after photoexcitation and lasting until the back-transfer to La is complete. The demonstration of response to the environment as a driver of coherent population dynamics among the excited states of tryptophan closes the long debate on its solvent-assisted relaxation mechanisms and extends its application as a local probe of protein dynamics to the ultrafast time scales.


Assuntos
Triptofano , Vibração , Solventes/química
5.
Nat Commun ; 12(1): 7285, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907186

RESUMO

DNA owes its remarkable photostability to its building blocks-the nucleosides-that efficiently dissipate the energy acquired upon ultraviolet light absorption. The mechanism occurring on a sub-picosecond time scale has been a matter of intense debate. Here we combine sub-30-fs transient absorption spectroscopy experiments with broad spectral coverage and state-of-the-art mixed quantum-classical dynamics with spectral signal simulations to resolve the early steps of the deactivation mechanisms of uridine (Urd) and 5-methyluridine (5mUrd) in aqueous solution. We track the wave packet motion from the Franck-Condon region to the conical intersections (CIs) with the ground state and observe spectral signatures of excited-state vibrational modes. 5mUrd exhibits an order of magnitude longer lifetime with respect to Urd due to the solvent reorganization needed to facilitate bulky methyl group motions leading to the CI. This activates potentially lesion-inducing dynamics such as ring opening. Involvement of the 1nπ* state is found to be negligible.


Assuntos
Nucleosídeos de Pirimidina/química , Processos Fotoquímicos , Nucleosídeos de Pirimidina/efeitos da radiação , Pirimidinas/química , Pirimidinas/efeitos da radiação , Solventes/química , Espectrofotometria Ultravioleta , Raios Ultravioleta , Uridina/análogos & derivados , Uridina/química , Uridina/efeitos da radiação , Vibração
6.
J Phys Chem Lett ; 12(45): 11070-11077, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748341

RESUMO

Epigenetic DNA modifications play a fundamental role in modulating gene expression and regulating cellular and developmental biological processes, thereby forming a second layer of information in DNA. The epigenetic 2'-deoxycytidine modification 5-methyl-2'-deoxycytidine, together with its enzymatic oxidation products (5-hydroxymethyl-2'-deoxycytidine, 5-formyl-2'-deoxycytidine, and 5-carboxyl-2'-deoxycytidine), are closely related to deactivation and reactivation of DNA transcription. Here, we combine sub-30-fs transient absorption spectroscopy with high-level correlated multiconfigurational CASPT2/MM computational methods, explicitly including the solvent, to obtain a unified picture of the photophysics of deoxycytidine-derived epigenetic DNA nucleosides. We assign all the observed time constants and identify the excited state relaxation pathways, including the competition of intersystem crossing and internal conversion for 5-formyl-2'-deoxycytidine and ballistic decay to the ground state for 5-carboxy-2'-deoxycytidine. Our work contributes to shed light on the role of epigenetic derivatives in DNA photodamage as well as on their possible therapeutic use.


Assuntos
DNA/genética , Desoxicitidina/genética , Epigênese Genética/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Conformação de Ácido Nucleico
7.
Phys Chem Chem Phys ; 22(27): 15496-15508, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32602504

RESUMO

An extensive theoretical characterization of the singlet excited state manifold of the five canonical DNA/RNA nucleobases (thymine, cytosine, uracil, adenine and guanine) in gas-phase is carried out with time-dependent density functional theory (TD-DFT) and restricted active space second-order perturbation theory (RASPT2) approaches. Both ground state and excited state absorptions are analyzed and compared between these different theoretical approaches, assessing the performance of the hybrid B3LYP and CAM-B3LYP (long-range corrected) functionals with respect to the RASPT2 reference. By comparing the TD-DFT estimates with our reference for high-lying excited states, we are able to narrow down specific energetic windows where TD-DFT may be safely employed to qualitatively reproduce the excited state absorption (ESA) signals registered in non-linear and time-resolved spectroscopy for monitoring photoinduced phenomena. Our results show a qualitative agreement between the RASPT2 reference and the B3LYP computed ESAs of pyrimidines in the near-IR/Visible spectral probing window while for purines the agreement is limited to the near-IR ESAs, with generally larger discrepancies obtained with the CAM-B3LYP functional. This outcome paves the way for appropriate application of cost-effective TD-DFT approaches to simulate linear and non-linear spectroscopies of realistic multichromophoric DNA/RNA systems with biological and nanotechnological relevance.


Assuntos
Adenina/química , Citosina/química , Teoria da Densidade Funcional , Guanina/química , Timina/química , Uracila/química , DNA/química , RNA/química
8.
Faraday Discuss ; 207(0): 233-250, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29359207

RESUMO

A computational strategy to simulate two-dimensional electronic spectra (2DES) is introduced, which allows us to analyse ground state dynamics and to sample and measure different conformations attained by flexible molecular systems in solution. An explicit mixed quantum mechanics/molecular mechanics (QM/MM) approach is employed for the evaluation of the necessary electronic excited state energies and transition dipole moments. The method is applied towards a study of the highly flexible water-solvated adenine-adenine monophosphate (ApA), a system featuring two interacting adenine moieties that display various intermolecular arrangements, known to deeply affect their photochemical outcome. Molecular dynamics simulations and cluster analysis have been used to select the molecular conformations, reducing the complexity of the flexible ApA conformational space. By using our sum-over-states (SOS) approach to obtain the 2DES spectra for each of these selected conformations, we can discern spectral changes and relate them to specific nuclear arrangements: close lying π-stacked bases exhibit a splitting of their respective 1La signal traces; T-stacked bases exhibit the appearance of charge transfer states in the low-energy Vis probing window while displaying no 1La splitting, being particularly favoured when promoting amino to 5-ring interactions; unstacked and distant adenine moieties exhibit signals similar to those of the adenine monomer, as is expected for non-interacting nucleobases. 2DES maps reveal the spectral fingerprints associated with specific molecular conformations, and are thus a promising option to enable their quantitative spectroscopic detection beyond standard 1D pump-probe techniques. This is expected to aid the understanding of how nucleobase aggregation controls and modulates the photostability and photo-damage of extended DNA/RNA systems.


Assuntos
DNA/química , Conformação de Ácido Nucleico , RNA/química , Teoria Quântica , Análise Espectral
9.
J Chem Phys ; 142(21): 212443, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049463

RESUMO

Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide conformational dependent fingerprints in dimeric systems, the performances of the selected reduced level of calculations have been tested in the construction of 2D electronic spectra for the in vacuo adenine monomer and the unstacked adenine homodimer, thereby exciting the Lb/La transitions with the pump pulse pair and probing in the Vis to near ultraviolet spectral window.

10.
Faraday Discuss ; 177: 345-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25607949

RESUMO

The SOS//QM/MM [Rivalta et al., Int. J. Quant. Chem., 2014, 114, 85] method consists of an arsenal of computational tools allowing accurate simulation of one-dimensional (1D) and bi-dimensional (2D) electronic spectra of monomeric and dimeric systems with unprecedented details and accuracy. Prominent features like doubly excited local and excimer states, accessible in multi-photon processes, as well as charge-transfer states arise naturally through the fully quantum-mechanical description of the aggregates. In this contribution the SOS//QM/MM approach is extended to simulate time-resolved 2D spectra that can be used to characterize ultrafast excited state relaxation dynamics with atomistic details. We demonstrate how critical structures on the excited state potential energy surface, obtained through state-of-the-art quantum chemical computations, can be used as snapshots of the excited state relaxation dynamics to generate spectral fingerprints for different de-excitation channels. The approach is based on high-level multi-configurational wavefunction methods combined with non-linear response theory and incorporates the effects of the solvent/environment through hybrid quantum mechanics/molecular mechanics (QM/MM) techniques. Specifically, the protocol makes use of the second-order Perturbation Theory (CASPT2) on top of Complete Active Space Self Consistent Field (CASSCF) strategy to compute the high-lying excited states that can be accessed in different 2D experimental setups. As an example, the photophysics of the stacked adenine-adenine dimer in a double-stranded DNA is modeled through 2D near-ultraviolet (NUV) spectroscopy.


Assuntos
Adenina/química , DNA/química , Simulação de Dinâmica Molecular , Fótons , Teoria Quântica , Solventes/química , Análise Espectral/métodos , Termodinâmica , Água/química
11.
Saudi J Ophthalmol ; 25(1): 93-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23960909

RESUMO

A case report of an orbital eosinophilic granuloma presenting as a fistula in a 15-year-old boy is presented. The patient had a history of a painful right upper eyelid swelling which required drainage and was considered as an abscess. An increase in swelling occurred and a small fistula appeared in the area subsequently. Computed tomography scan revealed a large soft tissue lesion in right superolateral orbit having intracranial extradural extension with destruction of bony orbital margin. Fine needle aspiration biopsy of the lesion revealed eosinophilic granuloma. A complete excision of the lesion was performed by a brow incision and histopathological examination of the excised specimen confirmed diagnosis. Although upper eyelid area eosinophilic granuloma is known to occur, its presentation as a fistula is not known.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...