Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0295397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055755

RESUMO

Here we employed sequence-based and structure-based screening for prospecting lipases that have structural homolog to Candida antarctica lipase B (CalB). CalB, a widely used biocatalyst, was used as structural template reference because of its enzymatic properties. Structural homolog could aid in the discovery of novel wild-type enzymes with desirable features and serve as a scaffold for further biocatalyst design. The available metagenomic data isolated from various environments was leveraged as a source for bioprospecting. We identified two bacteria lipases that showed high structural similarity to CalB with <40% sequence identity. Partial purification was conducted. In comparison to CalB, the enzymatic characteristics of two potential lipases were examined. A candidate exhibited optimal pH of 8 and temperature of 50°C similar to CalB. The second lipase candidate demonstrated an optimal pH of 8 and a higher optimal temperature of 55°C. Notably, this candidate sustained considerable activity at extreme conditions, maintaining high activity at 70°C or pH 9, contrasting with the diminished activity of CalB under similar conditions. Further comprehensive experimentation is warranted to uncover and exploit these novel enzymatic properties for practical biotechnological purposes.


Assuntos
Enzimas Imobilizadas , Lipase , Enzimas Imobilizadas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Lipase/genética , Lipase/química , Temperatura , Metagenômica
2.
Vet Res Commun ; 47(3): 1601-1613, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36997812

RESUMO

Rickettsial pathogens including Ehrlichia canis and Anaplasma platys are bacteria that cause parasitic infections in dogs such as canine monocytic ehrlichiosis (CME) and canine cyclic thrombocytopenia (CCT), respectively affecting mortality and morbidity worldwide. An accurate, sensitive, and rapid method to diagnose these agents is essential for effective treatment. In this study, a recombinase polymerase amplification (RPA) coupled with CRISPR-Cas12a methods was established to detect E. canis and A. platys infection in dogs based on the 16S rRNA. The optimal condition for DNA amplification by RPA was 37 °C for 20 min, followed by CRISPR-Cas12a digestion at 37 °C for one hour. A combination of RPA and the cas12a detection method did not react with other pathogens and demonstrated strong sensitivity, detecting as low as 100 copies of both E. canis and A. platys. This simultaneous detection method was significantly more sensitive than conventional PCR. The RPA-assisted cas12a assay provides specific, sensitive, rapid, simple and appropriate detection of rickettsial agents in canine blood at the point-of-care for diagnostics, disease prevention and surveillance.


Assuntos
Anaplasmose , Doenças do Cão , Ehrlichiose , Cães , Animais , Ehrlichia canis/genética , Anaplasmose/diagnóstico , Anaplasmose/epidemiologia , Anaplasmose/genética , Sistemas CRISPR-Cas , Recombinases/genética , Tailândia , RNA Ribossômico 16S/genética , Ehrlichiose/diagnóstico , Ehrlichiose/veterinária , Ehrlichiose/genética , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia
3.
Acta Trop ; 212: 105686, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32866458

RESUMO

Vector control, the most efficient tool to reduce mosquito-borne disease transmission, has been compromised by the rise of insecticide resistance. Recent studies suggest the potential of mosquito-associated microbiota as a source for new biocontrol agents or new insecticidal chemotypes. In this study, we identified a strain of Serratia marcescens that has larvicidal activity against Anopheles dirus, an important malaria vector in Southeast Asia. This bacterium secretes heat-labile larvicidal macromolecules when cultured under static condition at 25°C but not 37°C. Two major protein bands of approximately 55 kDa and 110 kDa were present in spent medium cultured at 25°C but not at 37°C. The Liquid Chromatography-Mass Spectrometry (LC-MS) analyses of these two protein bands identified several proteases and chitinases that were previously reported for insecticidal properties against agricultural insect pests. The treatment with protease and chitinase inhibitors led to a reduction in larvicidal activity, confirming that these two groups of enzymes are responsible for the macromolecule's toxicity. Taken together, our results suggest a potential use of these enzymes in the development of larvicidal agents against Anopheles mosquitoes.


Assuntos
Anopheles/efeitos dos fármacos , Quitinases/farmacologia , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Malária/transmissão , Mosquitos Vetores/efeitos dos fármacos , Peptídeo Hidrolases/farmacologia , Serratia marcescens/metabolismo , Animais
4.
Biochimie ; 144: 63-73, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29107017

RESUMO

d-Mannose isomerase (MI) reversibly isomerizes d-mannose to d-fructose, and is attractive for producing d-mannose from inexpensive d-fructose. It belongs to the N-acylglucosamine 2-epimerase (AGE) superfamily along with AGE, cellobiose 2-epimerase (CE), and aldose-ketose isomerase (AKI). In this study, Marinomonas mediterranea Marme_2490, showing low sequence identity with any known enzymes, was found to isomerize d-mannose as its primary substrate. Marme_2490 also isomerized d-lyxose and 4-OH d-mannose derivatives (d-talose and 4-O-monosaccharyl-d-mannose). Its activity for d-lyxose is known in other d-mannose isomerizing enzymes, such as MI and AKI, but we identified, for the first time, its activity for 4-OH d-mannose derivatives. Marme_2490 did not isomerize d-glucose, as known MIs do not, while AKI isomerizes both d-mannose and d-glucose. Thus, Marme_2490 was concluded to be an MI. The initial and equilibrium reaction products were analyzed by NMR to illuminate mechanistic information regarding the Marme_2490 reaction. The analysis of the initial reaction product revealed that ß-d-mannose was formed. In the analysis of the equilibrated reaction products in D2O, signals of 2-H of d-mannose and 1-H of d-fructose were clearly detected. This indicates that these protons are not substituted with deuterium from D2O and Marme_2490 catalyzes the intramolecular proton transfer between 1-C and 2-C. The crystal structure of Marme_2490 in a ligand-free form was determined and found that Marme_2490 is formed by an (α/α)6-barrel, which is commonly observed in AGE superfamily enzymes. Despite diverse reaction specificities, the orientations of residues involved in catalysis and substrate binding by Marme_2490 were similar to those in both AKI (Salmonella enterica AKI) and epimerase (Rhodothermus marinus CE). The Marme_2490 structure suggested that the α7→α8 and α11→α12 loops of the catalytic domain participated in the formation of an open substrate-binding site to provide sufficient space to bind 4-OH d-mannose derivatives.


Assuntos
Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Marinomonas/enzimologia , Dissacarídeos/química , Dissacarídeos/metabolismo , Evolução Molecular , Concentração de Íons de Hidrogênio , Isomerismo , Cinética , Filogenia , Especificidade por Substrato , Temperatura
5.
Biosci Biotechnol Biochem ; 78(2): 263-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036679

RESUMO

4-O-ß-D-Mannosyl-D-glucose phosphorylase (MGP), found in anaerobes, converts 4-O-ß-D-mannosyl-D-glucose (Man-Glc) to α-D-mannosyl phosphate and D-glucose. It participates in mannan metabolism with cellobiose 2-epimerase (CE), which converts ß-1,4-mannobiose to Man-Glc. A putative MGP gene is present in the genome of the thermophilic aerobe Rhodothermus marinus (Rm) upstream of the gene encoding CE. Konjac glucomannan enhanced production by R. marinus of MGP, CE, and extracellular mannan endo-1,4-ß-mannosidase. Recombinant RmMGP catalyzed the phosphorolysis of Man-Glc through a sequential bi-bi mechanism involving ternary complex formation. Its molecular masses were 45 and 222 kDa under denaturing and nondenaturing conditions, respectively. Its pH and temperature optima were 6.5 and 75 °C, and it was stable between pH 5.5-8.3 and below 80 °C. In the reverse reaction, RmMGP had higher acceptor preferences for 6-deoxy-D-glucose and D-xylose than R. albus NE1 MGP. In contrast to R. albus NE1 MGP, RmMGP utilized methyl ß-D-glucoside and 1,5-anhydro-D-glucitol as acceptor substrates.


Assuntos
Manosiltransferases/química , Manosiltransferases/metabolismo , Rhodothermus/enzimologia , Sequência de Aminoácidos , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Mananas/metabolismo , Dados de Sequência Molecular , Fosforilação , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...