Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 65(4): 404-12, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25947210

RESUMO

UNLABELLED: Measuring greenhouse gas (GHG) source emissions provides data for validation of GHG inventories, which provide the foundation for climate change mitigation. Two Toyota RAV4 electric vehicles were outfitted with high-precision instrumentation to determine spatial and temporal resolution of GHGs (e.g., nitrous oxide, methane [CH4], and carbon dioxide [CO2]), and other gaseous species and particulate metrics found near emission sources. Mobile measurement platform (MMP) analytical performance was determined over relevant measurement time scales. Pollutant residence times through the sampling configuration were measured, ranging from 3 to 11 sec, enabling proper time alignment for spatial measurement of each respective analyte. Linear response range for GHG analytes was assessed across expected mixing ratio ranges, showing minimal regression and standard error differences between 5, 10, 30, and 60 sec sampling intervals and negligible differences between the two MMPs. GHG instrument drift shows deviation of less than 0.8% over a 24-hr measurement period. These MMPs were utilized in tracer-dilution experiments at a California landfill and natural gas compressor station (NGCS) to quantify CH4 emissions. Replicate landfill measurements during October 2009 yielded annual CH4 emissions estimates of 0.10±0.01, 0.11±0.01, and 0.12±0.02 million tonnes of CO2 equivalent (MTCO2E). These values compare favorably to California GHG Emissions Inventory figures for 2007, 2008, and 2009 of 0.123, 0.125, and 0.126 MTCO2E/yr, respectively, for this facility. Measurements to quantify NGCS boosting facility-wide emissions, during June 2010 yielded an equivalent of 5400±100 TCO2E/yr under steady-state operation. However, measurements during condensate transfer without operational vapor recovery yield an instantaneous emission rate of 2-4 times greater, but was estimated to only add 12 TCO2E/yr overall. This work displays the utility for mobile GHG measurements to validate existing measurement and modeling approaches, so emission inventory values can be confirmed and associated uncertainties reduced. IMPLICATIONS: Measuring greenhouse gas (GHG) source emissions provides data and validation for GHG inventories, the foundation for climate change mitigation. Mobile measurement platforms with robust analytical instrumentation completed tracer-dilution experiments in California at a landfill and natural gas compressor station (NGCS) to quantify CH4 emissions. Data collected for landfill CH4 agree with the current California emissions inventory, while NGCS data show the possible variability from this type of facility. This work displays the utility of mobile GHG measurements to validate existing measurement and modeling approaches, such that emission inventory values can be confirmed, associated uncertainties reduced, and mitigation efforts quantified.


Assuntos
Poluentes Atmosféricos/química , Mudança Climática , Monitoramento Ambiental/métodos , Metano/química , Gás Natural/análise , Eliminação de Resíduos , Óxido Nitroso/química
2.
Environ Sci Technol ; 43(2): 272-9, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19238951

RESUMO

Size-resolved samples of airborne particulate matter (PM) collected during a severe winter pollution episode at three sites in the San Joaquin Valley of California were extracted with organic solvents and analyzed for detailed organic compounds using GC-MS. Six particle size fractions were characterized with diameter (Dp) < 1.8 microm; the smallest size fraction was 0.056 < Dp < 0.1 microm which accounts for the majority of the mass in the ultrafine (PM0.1) size range. Source profiles for ultrafine particles developed during previous studies were applied to the measurements at each sampling site to calculate source contributions to organic carbon (OC) and elemental carbon (EC) concentrations. Ultrafine EC concentrations ranged from 0.03 microg m(-3) during the daytime to 0.18 microg m(-3) during the nighttime. Gasoline fuel, diesel fuel, and lubricating oil combustion products accounted for the majority of the ultrafine EC concentrations, with relatively minor contributions from biomass combustion and meat cooking. Ultrafine OC concentrations ranged from 0.2 microg m(-3) during the daytime to 0.8 microg m(-3) during the nighttime. Wood combustion was found to be the largest source of ultrafine OC. Meat cooking was also identified as a significant potential source of PM0.1 mass but further study is required to verify the contributions from this source. Gasoline fuel, diesel fuel, and lubricating oil combustion products made minor contributions to PM0.1 OC mass. Total ultrafine particulate matter concentrations were dominated by contributions from wood combustion and meat cooking during the current study. Future inhalation exposure studies may wish to target these sources as potential causes of adverse health effects.


Assuntos
Poluição do Ar , Tamanho da Partícula , Material Particulado/química , Estações do Ano , California , Carbono/análise
3.
Environ Sci Technol ; 42(17): 6469-75, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18800516

RESUMO

Airborne particulate matter was collected using filter samplers and cascade impactors in six size fractions below 1.8 microm during a severe winter air pollution event at three sites in the Central Valley of California. The smallest size fraction analyzed was 0.056 < Dp <0.1 microm particle diameter, which accounts for the majority of the mass in the ultrafine (PM0.1) size range. Separate samples were collected during the daytime (10 a.m. to 6 p.m. PST) and nighttime (8 p.m. to 8 a.m. PST) to characterize diurnal patterns. Each sample was extracted with organic solvents and analyzed using gas chromatography mass spectrometry for molecular markers that can be used for size-resolved source apportionment calculations. Colocated impactor and filter measurements were highly correlated (R8 > 0.8) for retene, benzo[ghi]flouranthene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene, coronene, MW302 polycyclic aromatic hydrocarbon (PAHs), 17beta(H)-21alpha(H)-30-norhopane, 17alpha(H)-21beta(H)-hopane, alphabetabeta-20R-C29-ethylcholestane, levoglucosan, and cholesterol. Of these compounds, levoglucosan was present in the highest concentration (60-2080 ng m(-3)) followed by cholesterol (6-35 ng m(-3)), PAHs (2-38 ng m(-3)), and hopanes and steranes (0-2 ng m(-3)). Nighttime concentrations were higher than daytime concentrations in all cases. Organic compound size distributions were generally similar to the total carbon size distributions during the nighttime but showed greater variability during the daytime. This may reflect the dominance of fresh emission in the stagnant surface layer during the evening hours and the presence of aged organic aerosol at the surface during the daytime when the atmosphere is better mixed. All of the measured organic compound particle size distributions had a single mode that peaked somewhere between 0.18 and 0.56 microm, but the width of each distribution varied by compound. Cholesterol generally had the broadest particle size distribution, while benzo[ghi]perylene and 17alpha(H)-21beta(H)-29-norhopane generally had sharper peaks. The difference between the size distributions of the various particle-phase organic compounds reflects the fact that these compounds exist in particles emitted from different sources. The results of the current study will prove useful for size-resolved source apportionment exercises.


Assuntos
Poluentes Atmosféricos/química , Tamanho da Partícula , Estações do Ano
4.
Environ Sci Technol ; 42(17): 6580-6, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18800533

RESUMO

Airborne particulate hopanes, steranes, and polycyclic aromatic hydrocarbons (PAHs) were measured in six size fractions < 1.8 microm particle diameter at one site upwind and two sites downwind of the Interstate 5 freeway in San Diego, CA. The smallest size fraction collected was exclusively in the ultrafine size range (D(p) < 0.1 microm; PM0.1). Size distributions of hopanes, steranes, and PAHs peaked between 0.10-0.18 microm particle aerodynamic diameter with a tail extending into the PM0.1 size range. This pattern is similar to previous dynamometer studies of hopane, sterane, and PAH size distributions emitted from gasoline- and diesel-powered vehicles. Size-resolved source profiles were combined to form an "on-road" profile for motor oil, diesel, and gasoline contributions to EC and OC. The resulting equations were used to predict source contributions to the size distributions of EC and OC in the roadside environment. The method successfully accounted for the majority of the carbonaceous material in particles with diameter < 0.18 microm, with significant residual material in larger size fractions. The peak in both the measured and predicted EC size distribution occurred between 0.1-0.18 microm particle aerodynamic diameter. The predicted OC size distribution peaked between 0.1-0.18 microm particle diameter, butthe measured OC size distribution peaked between 0.56-1.0 microm particle diameter, possibly because of secondary organic aerosol formation. Predicted OC concentrations in particles with diameter < 0.18 microm were greater than measured values 18 m downwind of the roadway but showed good agreement 37 m downwind. The largest source contributions to the PM0.1 and PM0.18 size fractions were different. PM0.18 was dominated by diesel fuel and motor oil combustion products while PM0.1 was dominated by diesel fuel and gasoline fuel combustion products. Total source contributions to ultrafine (PM0.1) EC concentrations 37 m downwind of the roadway were 44 +/- 6% diesel fuel, 21 +/- 1% gasoline, 5 +/- 6% motor oil, and 30% unknown. Total source contributions to ultrafine (PM0.1) OC concentrations 37 m downwind of the roadway were 46 +/- 5% diesel fuel, 44 +/- 5% gasoline, 20 +/- 15% motor oil with a slight overprediction (11%). Diesel fuel appears to make the single largest contribution to ultrafine (PM0.1) particle mass given the fleet distribution during the current experiment.


Assuntos
Poluentes Atmosféricos/química , Compostos Policíclicos/química , Triterpenos/química , Emissões de Veículos , Tamanho da Partícula
5.
Environ Sci Technol ; 42(13): 4697-703, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18677993

RESUMO

Carbonyls from gasoline-powered light-duty vehicles (LDVs) and heavy-duty diesel-powered vehicles (HDDVs) operated on chassis dynamometers were measured by use of an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery: 4-fluorobenzaldehyde for < C8 carbonyls and 6-fluoro-4-chromanone for > or = C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 to 2000 microg/L of fuel for LDVs and from 1.8 to 27 000 microg/L of fuel for HDDVs. Gas-phase species accounted for 81-95% of the total carbonyls from LDVs and 86-88% from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19% of particulate organic carbon (POC) emissions from low-emission LDVs and 37% of POC emissions from three-way catalyst-equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9% depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas and particle phases under the dilution factors of 126-584 used in the present study.


Assuntos
Compostos Orgânicos/análise , Material Particulado/análise , Emissões de Veículos/análise , Benzaldeídos , Cromatografia Gasosa-Espectrometria de Massas , Hidrazonas/análise
6.
Environ Sci Technol ; 42(1): 235-42, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18350902

RESUMO

Size-resolved particulate matter emissions from heavy-duty diesel vehicles (HDDVs) and light-duty gasoline vehicles (LDGVs) operated under realistic driving cycles were analyzed for elemental carbon (EC), organic carbon (OC), hopanes, steranes, and polycyclic aromatic hydrocarbons. Measured hopane and sterane size distributions did not match the total carbon size distribution in most cases, suggesting that lubricating oil was not the dominant source of particulate carbon in the vehicle exhaust. A regression analysis using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and benzo[ghi/perylene as a tracer for gasoline showed that gasoline fuel and lubricating oil both make significant contributions to particulate EC and OC emissions from LDGVs. A similar regression analysis performed using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and flouranthene as a tracerfor diesel fuel was able to explain the size distribution of particulate EC and OC emissions from HDDVs. The analysis showed that EC emitted from all HDDVs operated under relatively high load conditions was dominated by diesel fuel contributions with little EC attributed to lubricating oil. Particulate OC emitted from HDDVs was more evenly apportioned between fuel and oil contributions. EC emitted from LDGVs operated underfuel-rich conditions was dominated by gasoline fuel contributions. OC emitted from visibly smoking LDGVs was mostly associated with lubricating oil, but OC emitted from all other categories of LDGVs was dominated by gasoline fuel. The current study clearly illustrates that fuel and lubricating oil make separate and distinct contributions to particulate matter emissions from motor vehicles. These particles should be tracked separately during ambient source apportionment studies since the atmospheric evolution and ultimate health effects of these particles may be different. The source profiles for fuel and lubricating oil contributions to EC and OC emissions derived in this study provide a foundation for future source apportionment calculations.


Assuntos
Poluentes Atmosféricos/análise , Veículos Automotores , Material Particulado/análise , Petróleo , Emissões de Veículos/análise , Carbono/análise , Monitoramento Ambiental , Hidrocarbonetos/análise , Análise de Regressão
7.
Environ Sci Technol ; 41(21): 7464-71, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18044527

RESUMO

Size distributions for particulate hopanes+steranes and nonvolatile polycyclic aromatic hydrocarbons (PAHs) emitted from five classes of light-duty gasoline-powered vehicles were measured using the federal test procedure (FTP), unified cycle (UC), and correction cycle (CC) driving cycles. 17alpha(H)-21beta(H)-29-norhopane, 17alpha(H)-21beta(H)-hopane, alpha beta beta-20R-stigmastane, and alpha beta beta-20S-stigmastane were highly correlated and behaved consistently across sampling methods. Coronene and benzo[ghi]perylene were the most ubiquitous heavy PAHs detected in the vehicle exhaust. The emission rates of hopanes, steranes, and PAHs contained in particles with aerodynamic diameters of less than 1.8 ,m varied by 2 orders of magnitude between the lowest- and highest-emitting vehicle classes. Hopane+sterane size distributions emitted from vehicles without an operating catalyst (including "cold-start" emissions from catalyst-equipped vehicles) were bimodal with one mode between 0.10 and 0.18 microm and the second mode >0.32 microm particle diameter. Hopane+sterane emissions released from vehicles with a catalyst at operating temperature had a single mode between 0.1 and 0.18 microm diameter. Hopane+sterane emissions from visibly smoking vehicles had a single mode between 0.18 and 0.32 microm diameter. Heavy PAH size distributions for all vehicle classes consistently had a single mode between 0.10 and 0.18 microm particle diameter (0.1-0.32 microm diameter for smoking vehicles). The geometric standard deviations for PAH size distributions were generally smaller than the corresponding hopane+sterane distributions. These trends suggest that hopanes+steranes and heavy PAHs act as tracers for separate processes of particulate organic carbon formation. PAH and hopane+sterane emissions shifted to smaller sizes during the more aggressive UC and CC driving cycles relative to the FTP. The fraction of PAH and hopane+sterane emissions in the ultrafine (Dp < 0.1 microm) range more than doubled during "warm-start" UC and CC cycles vs the FTP cycle. The enhancement of ultrafine PAHs during "cold-start" UC driving cycles was less pronounced.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , Monitoramento Ambiental , Gasolina , Hidrocarbonetos/análise , Veículos Automotores , Tamanho da Partícula
8.
Environ Sci Technol ; 41(13): 4548-54, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17695895

RESUMO

Gas- and particle-phase emissions from gasoline and diesel vehicles operated on chassis dynamometers were collected using annular denuders, quartz filters, and PUF substrates. Quinone species were measured using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization in conjunction with gas chromatography-mass spectrometry and high-performance liquid chromatography-mass spectrometry. Nine quinones were observed, ranging from C6 to C16. New species identified in motor vehicle exhaust include methyl-1,4-benzoquinone, 2-methyl-1,4-naphthoquinone (MNQN), and aceanthrenequinone. Gas-phase motor vehicle emissions of quinones are also reported for the first time. Six gas-phase quinones were quantified with emission rates of 2-28 000 microg L(-1) fuel consumed. The most abundant gas-phase quinones were 1,4-benzoquinone (BON) and MNQN. The gas-phase fraction was > or = 69% of quinone mass for light-duty gasoline emissions, and > or = 84% for heavy-duty diesel emissions. Eight particle-phase quinones were observed between 2 and 1600 microg L(-1), with BQN the most abundant species followed by 9,10-phenanthrenequinone and 1,2-naphthoquinone. Current particle-phase quinone measurements agree well with the few available previous results. Further research is needed concerning the gas-particle partitioning behavior of quinones in ambient and combustion source conditions.


Assuntos
Gasolina/análise , Veículos Automotores , Quinonas/análise , Emissões de Veículos/análise
9.
Environ Sci Technol ; 41(6): 1962-9, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17410791

RESUMO

Size distributions of particulate hopanes, steranes, and polycyclic aromatic hydrocarbons (PAHs) were measured in the exhaust from four heavy-duty diesel vehicles (HDDVs) operated under idle, creep, transient, and two high-speed driving modes. Particulate matter was collected using a chassis dynamometer and a dilution sampling system equipped with cascade impactors and filter samplers. Samples were extracted using organic solvents and analyzed using gas chromatography-mass spectrometry. Size distributions of hopanes and steranes were functions of engine load conditions and vehicle technology. Hopanes and steranes peaked in size ranges larger than 0.18 microm aerodynamic particle diameter under light load conditions and less than 0.10 microm aerodynamic particle diameter under heavier load conditions. The eight hopane size distributions emitted from newertechnology (> 1998) vehicles were unimodal while the four hopane size distributions emitted from older technology vehicles (< 1992) were bimodal. Similar trends between older and newer vehicles were not observed for sterane size distributions. The PAH composition emitted from HDDVs was a function of driving cycle and vehicle technology. Light driving cycles produced quantifiable emissions of 3, 4, 5, and 6 ring PAHs (including coronene). Heavier driving cycles produced only the 3 and 4 ring PAHs in quantifiable amounts. PM1.8 and PM0.1 source profiles constructed using the relative abundance of hopanes and steranes to total organic carbon were functions of vehicle load condition. Increasing load reduced the relative abundance of motor oil tracers in the PM1.8 size fraction and increased the abundance of these tracers in the PM0.1 size fraction. The relative abundances of PAHs in the PM0.1 and PM1.8 size fractions emitted from the oldest vehicle tested (1985 HDDV) were significantly higher than for any other vehicle tested.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Triterpenos/análise , Emissões de Veículos/análise , Cromatografia Gasosa-Espectrometria de Massas , Tamanho da Partícula
10.
Anal Chem ; 78(14): 5086-93, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16841933

RESUMO

Liquid chromatography coupled with atmospheric pressure chemical ionization (APCI) ion trap mass spectrometry (ITMS) is applied to atmospheric aerosol relevant carbonyls. Characterization of positive and negative ion detection mass spectra are presented for 24 model compounds analyzed in their underivatized and O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) oxime forms. The addition of PFBHA derivatization enhanced the detection and sensitivity for many of the carbonyls investigated. For all but five of the carbonyls examined, a pseudomolecular (M + H)+ ion is the base peak in the APCI positive ion mass spectra of PFBHA oxime derivatives and is observed in four of the five exceptions. Application of the evaluated analysis methodology to heavy-duty diesel source emissions facilitated the quantification of 10 aliphatic carbonyls (5 C5-C9 ketones, 4 C6 unsaturated ketones, 1 C6 dicarbonyl) and 14 aromatic carbonyls (1 C9 aldehyde, 5 C8-C13 ketones, 8 C6-C14 quinones). Diesel truck engine emission factors spanning 0.55-540 microg km(-1) were measured for gas- and particle-phase carbonyls. Good agreement was observed for gas-phase emission factors with results obtained by gas chromatography with ITMS.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Veículos Automotores , Compostos Orgânicos/análise , Compostos Orgânicos/química , Emissões de Veículos/análise , Estrutura Molecular , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...