Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Biomech Eng ; 108(1): 1-11, 1986 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-3959546

RESUMO

A simple axisymmetric finite element model of a human spine segment containing two adjacent vertebrae and the intervening intervertebral disk was constructed. The model incorporated four substructures: one to represent each of the vertebral bodies, the annulus fibrosus, and the nucleus pulposus. A semi-analytic technique was used to maintain the computational economies of a two-dimensional analysis when nonaxisymmetric loads were imposed on the model. The annulus material was represented as a layered fiber-reinforced composite. This paper describes the selection of material constants to represent the anisotropic layers of the annulus. It shows that a single set of material constants can be chosen so that model predictions of gross disk behavior under compression, torsion, shear, and moment loading are in reasonable agreement with the mean and range of experimentally measured disk behaviors. It also examines the effects of varying annular material properties.


Assuntos
Disco Intervertebral/fisiologia , Colágeno , Humanos , Modelos Estruturais , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...