Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572974

RESUMO

The insulin-degrading enzyme (IDE) possesses a strong ability to degrade insulin and Aß42 that has been linked to the neurodegeneration in Alzheimer's disease (AD). Given this, an attractive IDE-centric strategy for the development of therapeutics for AD is to boost IDE's activity for the clearance of Aß42 without offsetting insulin proteostasis. Recently, we showed that resveratrol enhances IDE's activity toward Aß42. In this work, we used a combination of chromatographic and spectroscopic techniques to investigate the effects of resveratrol on IDE's activity toward insulin. For comparison, we also studied epigallocatechin-3-gallate (EGCG). Our results show that the two polyphenols affect the IDE-dependent degradation of insulin in different ways: EGCG inhibits IDE while resveratrol has no effect. These findings suggest that polyphenols provide a path for developing therapeutic strategies that can selectively target IDE substrate specificity.

2.
Chemistry ; 24(67): 17681-17685, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30221409

RESUMO

The design, synthesis, and evaluation of two bifunctional molecular probes that can be used to visualize quinone-dependent amine oxidase enzymes in an activity-dependent manner are described. These probes use alkylhydrazines to irreversibly bind the target enzymes, which can then be visualized with either Western blotting or in-gel fluorescence. The results show that the Western blotting readout, which utilizes commercially available anti-nitrophenyl antibodies to detect a simple dinitrophenyl antigen, provides a stronger readout than the fluorescein-based fluorescence readout. This visualization strategy can be used to measure the potency of enzyme inhibitors by selectively visualizing the active enzyme that remains after treatment with an inhibitor. Looking forward, this probe molecule and visualization strategy will enable activity-based protein-profiling experiments, such as determining inhibitor selectivity values within full proteome mixtures, for this family of amine oxidase enzymes.


Assuntos
Ensaios Enzimáticos/métodos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Medições Luminescentes , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Semicarbazidas/química , Semicarbazidas/metabolismo
3.
Org Biomol Chem ; 15(38): 8023-8027, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28930349

RESUMO

Herein we report the design, synthesis, and testing of prototype members of a family of amyloid-binding molecular tools that can manipulate the fibrils by giving them various new functional properties. Potential applications include manipulating disease-relevant fibrils, developing novel functional nanomaterials, and studying the molecular details of fibril structures.


Assuntos
Amiloide/química , Nanoestruturas , Ligação Proteica , Conformação Proteica
4.
J Enzyme Inhib Med Chem ; 32(1): 496-503, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28110559

RESUMO

Lysyl oxidase has emerged as an important enzyme in cancer metastasis. Its activity has been reported to become upregulated in several types of cancer, and blocking its activity has been shown to limit the metastatic potential of various cancers. The small-molecules phenylhydrazine and ß-aminopropionitrile are known to inhibit lysyl oxidase; however, issues of stability, toxicity, and poorly defined mechanisms limit their potential use in medical applications. The experiments presented herein evaluate three other families of hydrazine-derived compounds - hydrazides, alkyl hydrazines, and semicarbazides - as irreversible inhibitors of lysyl oxidase including determining the kinetic parameters and comparing the inhibition selectivities for lysyl oxidase against the topaquinone-containing diamine oxidase from lentil seedlings. The results suggest that the hydrazide group may be a useful core functionality that can be developed into potent and selective inhibitors of lysyl oxidase and eventually find application in cancer metastasis research.


Assuntos
Hidrazinas/química , Oxirredutases/química , Quinonas/química
5.
Chemistry ; 23(14): 3479-3489, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28124498

RESUMO

Dithiazolyl (DTA)-based radicals have furnished many examples of organic spin-transition materials, some of them occurring with hysteresis and some others without. Herein, we present a combined computational and experimental study aimed at deciphering the factors controlling the existence or absence of hysteresis by comparing the phase transitions of 4-cyanobenzo-1,3,2-dithiazolyl and 1,3,5-trithia-2,4,6-triazapentalenyl radicals, which are prototypical examples of non-bistable and bistable spin transitions, respectively. Both materials present low-temperature diamagnetic and high-temperature paramagnetic structures, characterized by dimerized (⋅⋅⋅A-A⋅⋅⋅A-A⋅⋅⋅)n and regular (⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅)n π-stacks of radicals, respectively. We show that the regular π-stacks are not potential energy minima but average structures arising from a dynamic inter-conversion between two degenerate dimerized configurations: (⋅⋅⋅A-A⋅⋅⋅A-A⋅⋅⋅)n ↔(-A⋅⋅⋅A-A⋅⋅⋅A-)n . The emergence of this intra-stack dynamics upon heating gives rise to a second-order phase transition that is responsible for the change in the dominant magnetic interactions of the system. This suggests that the promotion of a (⋅⋅⋅A-A⋅⋅⋅A-A⋅⋅⋅)n ↔(-A⋅⋅⋅A-A⋅⋅⋅A-)n dynamics is a general mechanism for triggering spin transitions in DTA-based materials. Yet, this intra-stack dynamics does not suffice to generate bistability, which also requires a rearrangement of the intermolecular bonds between the π-stacks via a first-order phase transition.

6.
J Org Chem ; 81(22): 10964-10974, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27704824

RESUMO

Derivatives of geraniol are versatile synthetic intermediates that are useful for synthesizing a variety of terpenoid natural products; however, the results presented herein show that subtle differences in the structures of functionalized geranyl chlorides can significantly impact their abilities to function as effective electrophiles in synthetic reactions. A series of focused kinetics experiments identify specific structure-activity relationships that illustrate the importance not only of steric bulk, but also of electronic effects from distant regions of the molecules that contribute to their overall levels of reactivity. Computational modeling suggests that destabilization of the reactant by filled-filled orbital mixing events in some, but not all, conformations may be a critical contributor to these important electronic effects.

7.
ACS Chem Biol ; 8(11): 2404-11, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24053626

RESUMO

The ability to profile the prevalence and functional activity of endogenous antibodies is of vast clinical and diagnostic importance. Serum antibodies are an important class of biomarkers and are also crucial elements of immune responses elicited by natural disease-causing agents as well as vaccines. In particular, materials for manipulating and/or enhancing immune responses toward disease-causing cells or viruses have exhibited significant promise for therapeutic applications. Antibody-recruiting molecules (ARMs), bifunctional organic molecules that redirect endogenous antibodies to pathological targets, thereby increasing their recognition and clearance by the immune system, have proven particularly interesting. Notably, although ARMs capable of hijacking antibodies against oligosaccharides and electron-poor aromatics have proven efficacious, systematic comparisons of the prevalence and effectiveness of natural anti-hapten antibody populations have not appeared in the literature. Herein we report head-to-head comparisons of three chemically simple antigens, which are known ligands for endogenous antibodies. Thus, we have chemically synthesized bifunctional molecules containing 2,4-dinitrophenyl (DNP), phosphorylcholine (PC), and rhamnose. We have then used a combination of ELISA, flow cytometry, and cell-viability assays to compare these antigens in terms of their abilities both to recruit natural antibody from human serum and also to direct serum-dependent cytotoxicity against target cells. These studies have revealed rhamnose to be the most efficacious of the synthetic antigens examined. Furthermore, analysis of 122 individual serum samples has afforded comprehensive insights into population-wide prevalence and isotype distributions of distinct anti-hapten antibody populations. In addition to providing a general platform for comparing and studying anti-hapten antibodies, these studies serve as a useful starting point for the optimization of antibody-recruiting molecules and other synthetic strategies for modulating human immunity.


Assuntos
Anticorpos/metabolismo , Antígenos/metabolismo , Indústria Farmacêutica , Fatores Imunológicos/síntese química , Animais , Anticorpos/química , Ligação Competitiva , Células CHO , Sobrevivência Celular , Cricetulus , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/metabolismo , Estrutura Molecular , Peso Molecular , Fenilacetatos/metabolismo , Fosforilcolina/metabolismo , Ligação Proteica , Ramnose/metabolismo
8.
ACS Chem Biol ; 7(2): 316-21, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22098560

RESUMO

Synthetic compounds for controlling or creating human immunity have the potential to revolutionize disease treatment. Motivated by challenges in this arena, we report herein a strategy to target metastatic cancer cells for immune-mediated destruction by targeting the urokinase-type plasminogen activator receptor (uPAR). Urokinase-type plasminogen activator (uPA) and uPAR are overexpressed on the surfaces of a wide range of invasive cancer cells and are believed to contribute substantially to the migratory propensities of these cells. The key component of our approach is an antibody-recruiting molecule that targets the urokinase receptor (ARM-U). This bifunctional construct is formed by selectively, covalently attaching an antibody-binding small molecule to the active site of the urokinase enzyme. We demonstrate that ARM-U is capable of directing antibodies to the surfaces of target cancer cells and mediating both antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC) against multiple human cancer cell lines. We believe that the reported strategy has the potential to inform novel treatment options for a variety of deadly, invasive cancers.


Assuntos
Anticorpos/química , Anticorpos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Receptores de Ativador de Plasminogênio Tipo Uroquinase/imunologia , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico , Anticorpos/imunologia , Antineoplásicos/imunologia , Domínio Catalítico , Linhagem Celular Tumoral , Humanos , Neoplasias/enzimologia , Neoplasias/imunologia , Fagocitose/efeitos dos fármacos , Ativador de Plasminogênio Tipo Uroquinase/imunologia
9.
J Am Chem Soc ; 132(19): 6651-3, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20420451

RESUMO

In many common protein secondary structures, such as alpha-, 3(10), and polyproline II helices, an n --> pi* interaction places the adjacent backbone amide carbonyl groups in close proximity to each other. This interaction, which is reminiscent of the Burgi-Dunitz trajectory, involves delocalization of the lone pairs (n) of the oxygen (O(i-1)) of a peptide bond over the antibonding orbital (pi*) of C(i)=O(i) of the subsequent peptide bond. Such a proximal arrangement of the amide carbonyl groups should be opposed by the Pauli repulsion between the lone pairs (n) of O(i-1) and the bonding orbital (pi) of C(i)=O(i). We explored the conformational effects of this Pauli repulsion by employing common peptidomimetics, wherein the n --> pi* interaction is attenuated while the Pauli repulsion is retained. Our results indicate that this Pauli repulsion prevents the attainment of such proximal arrangement of the carbonyl groups in the absence of the n --> pi* interaction. This finding indicates that the poor mimicry of the amide bond by many peptidomimetics stems from their inability to partake in the n --> pi* interaction and emphasizes the quantum-mechanical nature of the interaction between adjacent amide carbonyl groups in proteins.


Assuntos
Proteínas/química , Modelos Moleculares , Estabilidade Proteica , Estrutura Secundária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...