Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 156(8): 084305, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35232174

RESUMO

The specific far-infrared spectral signatures associated with highly localized large-amplitude out-of-plane librational motion of water molecules have recently been demonstrated to provide sensitive spectroscopic probes for the micro-solvation of organic molecules [Mihrin et al., Phys. Chem. Chem. Phys. 21(4), 1717 (2019)]. The present work employs this direct far-infrared spectroscopic approach to investigate the non-covalent intermolecular forces involved in the micro-solvation of a selection of seven ether molecules with systematically varied alkyl substituents: dimethyl ether, diethyl ether, diisopropyl ether, ethyl methyl ether, t-butyl methyl ether, and t-butyl ethyl ether. The ranking of the observed out-of-plane water librational band signatures for this selected series of ether-water complexes embedded in inert neon matrices at 4 K reveals information about the interplay of directional intermolecular hydrogen bond motifs and non-directional and long-range dispersion interactions for the micro-solvated structures. These far-infrared observables differentiate minor subtle effects introduced by specific alkyl substituents and serve as rigorous experimental benchmarks for modern quantum chemical methodologies of various levels of scalability, which often fail to accurately predict the structural variations and corresponding vibrational signatures of the closely related systems. The accurate interaction energies of the series of ether-water complexes have been predicted by the domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations, followed by a local energy decomposition analysis of the energy components. In some cases, the secondary dispersion forces are in direct competition with the primary intermolecular hydrogen bonds as witnessed by the specific out-of-plane librational signatures.

2.
Chemphyschem ; 20(23): 3238-3244, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31702872

RESUMO

The high-resolution infrared absorption spectrum of the donor bending fundamental band ν 61 of the homodimer (HCN)2 has been collected by long-path static gas-phase Fourier transform spectroscopy at 207 K employing the highly brilliant 2.75 GeV electron storage ring source at Synchrotron SOLEIL. The rovibrational structure of the ν 61 transition has the typical appearance of a perpendicular type band associated with a Σ-Π transition for a linear polyatomic molecule. The total number of 100 assigned transitions are fitted employing a standard semi-rigid linear molecule Hamiltonian, providing the band origin ν0 of 779.05182(50) cm-1 together with spectroscopic parameters for the degenerate excited state. This band origin, blue-shifted by 67.15 cm-1 relative to the HCN monomer, provides the final significant contribution to the change of intra-molecular vibrational zero-point energy upon HCN dimerization. The combination with the vibrational zero-point energy contribution determined recently for the class of large-amplitude inter-molecular fundamental transitions then enables a complete determination of the total change of vibrational zero-point energy of 3.35±0.30 kJ mol-1 . The new spectroscopic findings together with previously reported benchmark CCSDT(Q)/CBS electronic energies [Hoobler et al. ChemPhysChem. 19, 3257-3265 (2018)] provide the best semi-experimental estimate of 16.48±0.30 kJ mol-1 for the dissociation energy D0 of this prototypical homodimer.

3.
Phys Chem Chem Phys ; 21(4): 1717-1723, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30623967

RESUMO

The most prominent spectroscopic observable for the hydrogen bonding between individual molecules in liquid water is the broad absorption band detected in the spectral region between 300 and 900 cm-1. The present work demonstrates how the associated large-amplitude out-of-plane OH librational motion of H2O molecules also directly reflects the microsolvation of organic compounds. This highly localized OH librational motion of the first solvating H2O molecule causes a significant change of dipole moment and gives rise to a strong characteristic band in the far-infrared spectral region, which is correlated quantitatively with the complexation energy. The out-of-plane OH librational band origins ranging from 324.5 to 658.9 cm-1 have been assigned experimentally for a series of four binary hydrogen-bonded H2O complexes embedded in solid neon involving S-, O- and N-containing compounds with increasing hydrogen bond acceptor capability. The hydrogen bond energies for altogether eight binary H2O complexes relative to the experimental value of 13.2 ± 0.12 kJ mol-1 for the prototypical (H2O)2 system [Rocher-Casterline et al., J. Chem. Phys., 2011, 134, 211101] are revealed directly by these far-infrared spectroscopic observables. The far-infrared spectral signatures are able to capture even minor differences in the hydrogen bond acceptor capability of O atoms with slightly different alkyl substituents in the order H-O-C(CH3)3 > CH3-O-CH3 > H-O-CH(CH3)2 > H-O-CH2CH3.

4.
Phys Chem Chem Phys ; 20(12): 8241-8246, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29528052

RESUMO

The high-resolution terahertz absorption spectrum of the large-amplitude intermolecular donor librational band ν of the homodimer (HCN)2 has been recorded by means of long-path static gas-phase Fourier transform spectroscopy at 207 K employing a highly brilliant electron storage ring source. The rovibrational structure of the ν band has the typical appearance of a perpendicular type band of a Σ-Π transition for a linear polyatomic molecule. The generated terahertz spectrum is analyzed employing a standard semi-rigid linear molecule Hamiltonian, yielding a band origin ν0 of 119.11526(60) cm-1 together with values for the excited state rotational constant B', the excited state quartic centrifugal distortion constant DJ' and the l-type doubling constant q for the degenerate state associated with the ν mode. The until now missing donor librational band origin enables the determination of an accurate experimental value for the vibrational zero-point energy of 2.50 ± 0.05 kJ mol-1 arising from the entire class of large-amplitude intermolecular modes. The spectroscopic findings are complemented by CCSD(T)-F12b/aug-cc-pV5Z (electronic energies) and CCSD(T)-F12b/aug-cc-pVQZ (force fields) electronic structure calculations, providing a (semi)-experimental value of 17.20 ± 0.20 kJ mol-1 for the dissociation energy D0 of this strictly linear weak intermolecular CHN hydrogen bond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...