Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 793260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069576

RESUMO

Dietary probiotics may enhance gut health by directly competing with pathogenic agents and through immunostimulatory effects. These properties are recognized in the context of bacterial and viral pathogens, but less is known about interactions with eukaryotic pathogens such as parasitic worms (helminths). In this study we investigated whether two probiotic mixtures (comprised of Bacillus amyloliquefaciens, B. subtilis, and Enterococcus faecium [BBE], or Lactobacillus rhamnosus LGG and Bifidobacterium animalis subspecies Lactis Bb12 [LB]) could modulate helminth infection kinetics as well as the gut microbiome and intestinal immune responses in pigs infected with the nodular worm Oesophagostomum dentatum. We observed that neither probiotic mixture influenced helminth infection levels. BBE, and to a lesser extent LB, changed the alpha- and beta-diversity indices of the colon and fecal microbiota, notably including an enrichment of fecal Bifidobacterium spp. by BBE. However, these effects were muted by concurrent O. dentatum infection. BBE (but not LB) significantly attenuated the O. dentatum-induced upregulation of genes involved in type-2 inflammation and restored normal lymphocyte ratios in the ileo-caecal lymph nodes that were altered by infection. Moreover, inflammatory cytokine release from blood mononuclear cells and intestinal lymphocytes was diminished by BBE. Collectively, our data suggest that selected probiotic mixtures can play a role in maintaining immune homeostasis during type 2-biased inflammation. In addition, potentially beneficial changes in the microbiome induced by dietary probiotics may be counteracted by helminths, highlighting the complex inter-relationships that potentially exist between probiotic bacteria and intestinal parasites.


Assuntos
Bacillus/imunologia , Enterococcus faecium/imunologia , Microbioma Gastrointestinal/imunologia , Esofagostomíase , Oesophagostomum/imunologia , Probióticos/farmacologia , Doenças dos Suínos , Animais , Feminino , Masculino , Esofagostomíase/imunologia , Esofagostomíase/microbiologia , Esofagostomíase/veterinária , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/parasitologia
2.
J Immunol ; 204(11): 3042-3055, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32284331

RESUMO

Fermentable dietary fibers promote the growth of beneficial bacteria, can enhance mucosal barrier integrity, and reduce chronic inflammation. However, effects on intestinal type 2 immune function remain unclear. In this study, we used the murine whipworm Trichuris muris to investigate the effect of the fermentable fiber inulin on host responses to infection regimes that promote distinct Th1 and Th2 responses in C57BL/6 mice. In uninfected mice, dietary inulin stimulated the growth of beneficial bacteria, such as Bifidobacterium (Actinobacteria) and Akkermansia (Verrucomicrobia). Despite this, inulin prevented worm expulsion in normally resistant mice, instead resulting in chronic infection, whereas mice fed an equivalent amount of nonfermentable fiber (cellulose) expelled worms normally. Lack of expulsion in the mice fed inulin was accompanied by a significantly Th1-skewed immune profile characterized by increased T-bet+ T cells and IFN-γ production in mesenteric lymph nodes, increased expression of Ido1 in the cecum, and a complete absence of mast cell and IgE production. Furthermore, the combination of dietary inulin and high-dose T. muris infection caused marked dysbiosis, with expansion of the Firmicutes and Proteobacteria phyla, near elimination of Bacteroidetes, and marked reductions in cecal short-chain fatty acids. Neutralization of IFN-γ during infection abrogated Ido1 expression and was sufficient to restore IgE production and worm expulsion in inulin-fed mice. Our results indicate that, whereas inulin promoted gut health in otherwise healthy mice, during T. muris infection, it exacerbated inflammatory responses and dysbiosis. Thus, the positive effects of fermentable fiber on gut inflammation appear to be context dependent, revealing a novel interaction between diet and infection.


Assuntos
Fibras na Dieta/metabolismo , Inflamação/imunologia , Inulina/metabolismo , Células Th1/imunologia , Células Th2/imunologia , Tricuríase/imunologia , Trichuris/fisiologia , Animais , Progressão da Doença , Disbiose , Fermentação , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Camundongos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
3.
Mol Immunol ; 121: 127-135, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32200170

RESUMO

Consumption of fermentable dietary fibres, such as inulin, or administration of helminth products (e.g. Trichuris suis ova) have independently been shown to alleviate inflammation in vivo. We recently found that dietary inulin and T. suis infection in pigs co-operatively suppressed type-1 inflammatory responses in the gut, suggesting the potential of dietary components to augment anti-inflammatory responses induced by certain helminths. Here, we explored whether T. suis antigens and inulin could directly suppress inflammatory responses in vitro in a cooperative manner. T. suis soluble products (TsSP) strongly suppressed lipopolysaccharide (LPS)-induced IL-6 and TNF-α secretion from murine macrophages and induced an anti-inflammatory phenotype as evidenced by transcriptomic and gene pathway analyses. Inulin regulated the expression of a small number of genes and transcriptional pathways in macrophages after exposure to LPS, but did not enhance the suppressive activity of TsSP, either directly or in co-culture experiments with intestinal epithelial cells. Culture of macrophages with short-chain fatty acids, the products of microbial fermentation of inulin, did however appear to enhance TsSP-mediated inhibition of TNF-α production. Our results confirm a direct role for helminth products in suppressing inflammatory responses in macrophages. In contrast, inulin had little capacity to directly modulate LPS-induced responses. Our results suggest distinct mode-of-actions of T. suis and inulin in regulating inflammatory responses, and that the role of inulin in modulating the response to helminth infection may be dependent on other factors such as production of metabolites by the gut microbiota.


Assuntos
Antígenos de Helmintos/farmacologia , Inflamação/terapia , Inulina/farmacologia , Macrófagos/efeitos dos fármacos , Trichuris/imunologia , Animais , Antígenos de Helmintos/imunologia , Antígenos de Helmintos/uso terapêutico , Células Cultivadas , Técnicas de Cocultura , Fibras na Dieta/farmacologia , Células Epiteliais , Ácidos Graxos Voláteis/farmacologia , Humanos , Inflamação/imunologia , Interleucina-6/imunologia , Interleucina-6/metabolismo , Mucosa Intestinal/citologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Vet Immunol Immunopathol ; 211: 6-9, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31084896

RESUMO

Helminth parasites are highly prevalent in swine production, causing chronic infections and considerable morbidity due to growth retardation. Moreover, helminths actively modulate host immune responses to other pathogens and/or vaccines. Here, we investigated the modulatory effects of Ascaris suum adult body fluid (ABF) and Trichuris suis Soluble Products (TsSP) on the cytokine response in porcine peripheral blood mononuclear cells (PBMCs) and the intestinal epithelial cell line IPEC-J2. In PBMCs, TsSP induced the secretion of IL-6, IL-10 and IL-1ß, but not TNF-α. Moreover, TsSP significantly enhanced the production of bacterial lipopolysaccharide (LPS)-induced IL-6 and IL-10 but suppressed the production of LPS-induced TNF-α. ABF did not induce cytokine secretion from PBMC, but suppressed LPS-induced secretion of TNF-α and IL-6. ABF did not have any effect on cytokine production in IPEC-J2 cells. In contrast, TsSP selectively induced the secretion of IL-6, and enhanced the IL-6 response induced by LPS. The IL-6 response appeared to be a conserved response to T. suis products, as significant secretion was also observed in alveolar macrophages. Thus, T. suis products have diverse modulatory effects on cytokine secretion in vitro, with IL-6 production a consistent feature of the innate host response.


Assuntos
Antígenos de Helmintos/imunologia , Ascaris suum/imunologia , Citocinas/metabolismo , Células Epiteliais/imunologia , Leucócitos Mononucleares/imunologia , Doenças dos Suínos/parasitologia , Trichuris/imunologia , Animais , Ascaríase/imunologia , Ascaríase/parasitologia , Ascaríase/veterinária , Citocinas/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Feminino , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/parasitologia , Masculino , Suínos/imunologia , Suínos/parasitologia , Doenças dos Suínos/imunologia , Tricuríase/imunologia , Tricuríase/parasitologia , Tricuríase/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...