Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(1): 195-211, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939802

RESUMO

Pinned and mobile ferroelastic domain walls are detected in response to mechanical stress in a Mn3+ complex with two-step thermal switching between the spin triplet and spin quintet forms. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy on [MnIII(3,5-diCl-sal2(323))]BPh4 reveal three distinct symmetry-breaking phase transitions in the polar space group series Cc → Pc → P1 → P1(1/2). The transition mechanisms involve coupling between structural and spin state order parameters, and the three transitions are Landau tricritical, first order, and first order, respectively. The two first-order phase transitions also show changes in magnetic properties and spin state ordering in the Jahn-Teller-active Mn3+ complex. On the basis of the change in symmetry from that of the parent structure, Cc, the triclinic phases are also ferroelastic, which has been confirmed by resonant ultrasound spectroscopy. Measurements of magnetoelectric coupling revealed significant changes in electric polarization at both the Pc → P1 and P1 → P1(1/2) transitions, with opposite signs. All these phases are polar, while P1 is also chiral. Remanent electric polarization was detected when applying a pulsed magnetic field of 60 T in the P1→ P1(1/2) region of bistability at 90 K. Thus, we showcase here a rare example of multifunctionality in a spin crossover material where the strain and polarization tensors and structural and spin state order parameters are strongly coupled.

2.
Solid State Nucl Magn Reson ; 87: 29-37, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28759801

RESUMO

Recent advances in computational methodology allowed for first-principles calculations of the nuclear shielding tensor for a series of paramagnetic nickel(II) acetylacetonate complexes, [Ni(acac)2L2] with L = H2O, D2O, NH3, ND3, and PMe2Ph have provided detailed insight into the origin of the paramagnetic contributions to the total shift tensor. This was employed for the assignment of the solid-state 1,2H and 13C MAS NMR spectra of these compounds. The two major contributions to the isotropic shifts are by orbital (diamagnetic-like) and contact mechanism. The orbital shielding, contact, as well as dipolar terms all contribute to the anisotropic component. The calculations suggest reassignment of the 13C methyl and carbonyl resonances in the acac ligand [Inorg. Chem.53, 2014, 399] leading to isotropic paramagnetic shifts of δ(13C) ≈ 800-1100 ppm and ≈180-300 ppm for 13C for the methyl and carbonyl carbons located three and two bonds away from the paramagnetic Ni(II) ion, respectively. Assignment using three different empirical correlations, i.e., paramagnetic shifts, shift anisotropy, and relaxation (T1) were ambiguous, however the latter two support the computational results. Thus, solid-state NMR spectroscopy in combination with modern quantum-chemical calculations of paramagnetic shifts constitutes a promising tool for structural investigations of metal complexes and materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...