Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Nutr ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605233

RESUMO

PURPOSE: Glycemic response to the same meal depends on daytime and alignment of consumption with the inner clock, which has not been examined by individual chronotype yet. This study examined whether the 2-h postprandial and 24-h glycemic response to a meal with high glycemic index (GI) differ when consumed early or late in the day among students with early or late chronotype. METHODS: From a screening of 327 students aged 18-25 years, those with early (n = 22) or late (n = 23) chronotype participated in a 7-day randomized controlled cross-over intervention study. After a 3-day observational phase, standardized meals were provided on run-in/washout (days 4 and 6) and intervention (days 5 and 7), on which participants received a high GI meal (GI = 72) in the morning (7 a.m.) or in the evening (8 p.m.). All other meals had a medium GI. Continuous glucose monitoring was used to measure 2-h postprandial and 24-h glycemic responses and their variability. RESULTS: Among students with early chronotype 2-h postprandial glucose responses to the high GI meal were higher in the evening than in the morning (iAUC: 234 (± 92) vs. 195 (± 91) (mmol/L) × min, p = 0.042). Likewise, mean and lowest 2-h postprandial glucose values were higher when the high GI meal was consumed in the evening (p < 0.001; p = 0.017). 24-h glycemic responses were similar irrespective of meal time. Participants with late chronotype consuming a high GI meal in the morning or evening showed similar 2-h postprandial (iAUC: 211 (± 110) vs. 207 (± 95) (mmol/L) × min, p = 0.9) and 24-h glycemic responses at both daytimes. CONCLUSIONS: Diurnal differences in response to a high GI meal are confined to those young adults with early chronotype, whilst those with a late chronotype seem vulnerable to both very early and late high GI meals. Registered at clinicaltrials.gov (NCT04298645; 22/01/2020).

2.
Exp Brain Res ; 242(6): 1301-1310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551692

RESUMO

Ictal and interictal activity within the autonomic nervous system is characterized by a sympathetic overshoot in people with epilepsy. This autonomic dysfunction is assumed to be driven by alterations in the central autonomic network. In this study, exercise-induced changes of the interrelation of central and peripheral autonomic activity in patients with epilepsy was assessed. 21 patients with epilepsy (16 seizure-free), and 21 healthy matched controls performed an exhaustive bicycle ergometer test. Immediately before and after the exercise test, resting state electroencephalography measurements (Brain Products GmbH, 128-channel actiCHamp) of 5 min were carried out to investigate functional connectivity assessed by phase locking value in source space for whole brain, central autonomic network and visual network. Additionally, 1-lead ECG (Brain products GmbH) was performed to analyze parasympathetic (root mean square of successive differences (RMSSD) of the heart rate variability) and sympathetic activity (electrodermal activity (meanEDA)). MeanEDA increased (p < 0.001) and RMSSD decreased (p < 0.001) from pre to post-exercise in both groups. Correlation coefficients of meanEDA and central autonomic network functional connectivity differed significantly between the groups (p = 0.004) after exercise. Both patients with epilepsy and normal control subjects revealed the expected physiological peripheral autonomic responses to acute exhaustive exercise, but alterations of the correlation between central autonomic and peripheral sympathetic activity may indicate a different sympathetic reactivity after exercise in patients with epilepsy. The clinical relevance of this finding and its modulators (seizures, anti-seizure medication, etc.) still needs to be elucidated.


Assuntos
Eletroencefalografia , Epilepsia , Exercício Físico , Frequência Cardíaca , Sistema Nervoso Simpático , Humanos , Masculino , Feminino , Adulto , Epilepsia/fisiopatologia , Exercício Físico/fisiologia , Eletroencefalografia/métodos , Frequência Cardíaca/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Adulto Jovem , Pessoa de Meia-Idade , Eletrocardiografia , Teste de Esforço , Resposta Galvânica da Pele/fisiologia , Encéfalo/fisiopatologia
3.
Sensors (Basel) ; 23(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37177393

RESUMO

Sport-related concussions (SRC) are characterized by impaired autonomic control. Heart rate variability (HRV) offers easily obtainable diagnostic approaches to SRC-associated dysautonomia, but studies investigating HRV during sleep, a crucial time for post-traumatic cerebral regeneration, are relatively sparse. The aim of this study was to assess nocturnal HRV in athletes during their return to sports (RTS) after SRC in their home environment using wireless wrist sensors (E4, Empatica, Milan, Italy) and to explore possible relations with clinical concussion-associated sleep symptoms. Eighteen SRC athletes wore a wrist sensor obtaining photoplethysmographic data at night during RTS as well as one night after full clinical recovery post RTS (>3 weeks). Nocturnal heart rate and parasympathetic activity of HRV (RMSSD) were calculated and compared using the Mann-Whitney U Test to values of eighteen; matched by sex, age, sport, and expertise, control athletes underwent the identical protocol. During RTS, nocturnal RMSSD of SRC athletes (Mdn = 77.74 ms) showed a trend compared to controls (Mdn = 95.68 ms, p = 0.021, r = -0.382, p adjusted using false discovery rate = 0.126) and positively correlated to "drowsiness" (r = 0.523, p = 0.023, p adjusted = 0.046). Post RTS, no differences in RMSSD between groups were detected. The presented findings in nocturnal cardiac parasympathetic activity during nights of RTS in SRC athletes might be a result of concussion, although its relation to recovery still needs to be elucidated. Utilization of wireless sensors and wearable technologies in home-based settings offer a possibility to obtain helpful objective data in the management of SRC.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Esportes , Humanos , Traumatismos em Atletas/diagnóstico , Traumatismos em Atletas/complicações , Volta ao Esporte , Concussão Encefálica/diagnóstico , Concussão Encefálica/complicações , Atletas
4.
Front Physiol ; 10: 240, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984010

RESUMO

Physical exercise has been shown to modulate activity within the autonomic nervous system (ANS). Considering physical exercise as a holistic stimulus on the nervous system and specifically the ANS, uni- and multimodal analysis tools were applied to characterize centrally driven interactions and control of ANS functions. Nineteen young and physically active participants performed treadmill tests at individually determined moderate and high intensities. Continuous electrodermal activity (EDA), heart rate (HR), and skin temperature at wrist (Temp) were recorded by wireless multisensor devices (Empatica® E4, Milan, Italy) before and 30 min after exercise. Artifact-free continuous 3 min intervals were analyzed. For unimodal analysis, mean values were calculated, for bimodal and multimodal analysis canonical correlation analysis (CCA) was performed. Unimodal results indicate that physical exercise affects ANS activity. More specifically, Temp increased due to physical activity (moderate intensity: from 34.15°C to 35.34°C and high intensity: from 34.11°C to 35.09°C). HR increased more for the high (from 60.76 bpm to 79.89 bpm) than for the moderate (from 64.81 bpm to 70.83 bpm) intensity. EDA was higher for the high (pre: 8.06 µS and post: 9.37 µS) than for the moderate (pre: 4.31 µS and post: 3.91 µS) intensity. Bimodal analyses revealed high variations in correlations before exercise. The overall correlation coefficient showed varying correlations in pretest measures for all modality pairs (EDA-HR, HR-Temp, Temp-EDA at moderate: 0.831, 0.998, 0.921 and high: 0.706, 0, 0.578). After exercising at moderate intensity coefficients changed little (0.828, 0.744, 0.994), but increased substantially for all modality pairs after exercising at high intensity (0.976, 0.898, 0.926). Multimodal analysis confirmed bimodal results. Exercise-induced changes in ANS activity can be found in multiple ANS modalities as well as in their interactions. Those changes are intensity-specific: with higher intensity the interactions increase. Canonical correlations between different ANS modalities may therefore offer a feasible approach to determine exercise induced modulations of ANS activity.

5.
Front Physiol ; 9: 1809, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618821

RESUMO

Purpose: Running economy (RE), expressed as oxygen cost (O2 cost) and energy cost of running (Cr) is important in ultramarathon (UM) running as it can help predict race performance. Controversy remains if RE increases, decreases, or remains stable in UM running. We examined RE before, during, and after a 65-km UM. Methods: 15 male UM runners (mean age 45 ± 5.7 years) completed a standard exercise test (mean VO2max 48.8 ± 3.4 ml⋅kg-1⋅min-1) for determination of the individual testing speed (60% VO2max: mean speed 9.4 ± 0.7 km/h). This was followed by a 65-km UM (elevation ± 1093 m) consisting of three laps (each 21.7 km). Pre and post indirect calorimetry measurements at individual running speed on the treadmill at UM-specific slopes (average percentage of positive and negative elevation) at -3, +3%, and level grade were performed in randomized order on a motorized treadmill in the laboratory for calculation of RE. Additionally after each lap, testing at +3% took place. Results: The O2 cost, Cr, and RER increased significantly pre to post UM (p < 0.01). During the uphill running, a main effect of distance indicated a gradual, linear increase in O2 cost, F(2,28) = 5.81, p < 0.01, η p 2 = 0.29, and Cr, F(2,28) = 5.96, p = 0.01, η p 2 = 0.30. Conclusion: O2 cost and Cr increased significantly pre to post UM in all testing conditions as well as during the uphill testing throughout the UM. This is the first study to demonstrate a consistent increase in O2 cost and Cr among a range of different slopes, at individual running speeds and race-specific slopes giving further evidence that these measures of RE increase in UM running.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...