Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biomed Pharmacother ; 104: 404-410, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29787987

RESUMO

Due to their trophic and immunoregulatory characteristics mesenchymal stem cells (MSCs) have tremendous potential for use in a variety of clinical applications. Challenges in MSCs' clinical applications include low survival of transplanted cells and low grafting efficiency requiring use of a high number of MSCs to achieve therapeutic benefits. Accordingly, new approaches are urgently needed in order to overcome these limitations. Recent evidence indicates that modulation of autophagy in MSCs prior to their transplantation enhances survival and viability of engrafted MSCs and promotes their pro-angiogenic and immunomodulatory characteristics. Here, we review the current literature describing mechanisms by which modulation of autophagy strengthens pro-angiogenic and immunosuppressive characteristics of MSCs in animal models of multiple sclerosis, osteoporosis, diabetic limb ischemia, myocardial infarction, acute graft-versus-host disease, kidney and liver diseases. Obtained results suggest that modulation of autophagy in MSCs may represent a new therapeutic approach that could enhance efficacy of MSCs in the treatment of ischemic and autoimmune diseases.


Assuntos
Doenças Autoimunes/terapia , Autofagia/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Transplante de Células-Tronco Mesenquimais/métodos
2.
Health Policy ; 122(5): 519-527, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29422372

RESUMO

This study aims to present information on the surveillance, policy developments, and implementation of physical activity policies in the 28 European Union (EU) countries. Data was collected on the implementation of the EU Recommendation on health-enhancing physical activity (HEPA) across sectors. In line with the monitoring framework proposed in the Recommendation, a questionnaire was designed to capture information on 23 physical activity indicators. Of the 27 EU countries that responded to the survey, 22 have implemented actions on more than 10 indicators, four countries have implemented more than 20 indicators, and one country has fully addressed and implemented all of the 23 indicators of the monitoring framework. The data collected under this HEPA monitoring framework provided, for the first time, an overview of the implementation of HEPA-related policies and actions at the national level throughout the EU. Areas that need more investment are the "Senior Citizens" sector followed by the "Work Environment", and the "Environment, Urban Planning, and Public Safety" sectors. This information also enabled comparison of the state of play of HEPA policy implementation between EU Member States and facilitated the exchange of good practices.


Assuntos
Exercício Físico , Implementação de Plano de Saúde , Promoção da Saúde/métodos , Formulação de Políticas , Europa (Continente) , Política de Saúde , Humanos
3.
RNA ; 22(9): 1386-99, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27390266

RESUMO

Assaying effects on pre-rRNA processing and ribosome assembly upon depleting individual ribosomal proteins (r-proteins) provided an initial paradigm for assembly of eukaryotic ribosomes in vivo-that each structural domain of ribosomal subunits assembles in a hierarchical fashion. However, two features suggest that a more complex pathway may exist: (i) Some r-proteins contain extensions that reach long distances across ribosomes to interact with multiple rRNA domains as well as with other r-proteins. (ii) Individual r-proteins may assemble in a stepwise fashion. For example, the globular domain of an r-protein might assemble separately from its extensions. Thus, these extensions might play roles in assembly that could not be revealed by depleting the entire protein. Here, we show that deleting or mutating extensions of r-proteins L7 (uL30) and L35 (uL29) from yeast reveal important roles in early and middle steps during 60S ribosomal subunit biogenesis. Detailed analysis of the N-terminal terminal extension of L8 (eL8) showed that it is necessary for late nuclear stages of 60S subunit assembly involving two major remodeling events: removal of the ITS2 spacer; and reorganization of the central protuberance (CP) containing 5S rRNA and r-proteins L5 (uL18) and L11 (uL5). Mutations in the L8 extension block processing of 7S pre-rRNA, prevent release of assembly factors Rpf2 and Rrs1 from pre-ribosomes, which is required for rotation of the CP, and block association of Sda1, the Rix1 complex, and the Rea1 ATPase involved in late steps of remodeling.


Assuntos
Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nature ; 534(7605): 133-7, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251291

RESUMO

Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.


Assuntos
Microscopia Crioeletrônica , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Transporte Ativo do Núcleo Celular , Sequência de Bases , Domínio Catalítico , Núcleo Celular/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citoplasma/metabolismo , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/metabolismo , DNA Espaçador Ribossômico/ultraestrutura , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/ultraestrutura , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Ligação Proteica , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Fúngico/ultraestrutura , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/isolamento & purificação , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Rotação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
5.
RNA ; 22(6): 852-66, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27036125

RESUMO

In higher eukaryotes, pre-rRNA processing occurs almost exclusively post-transcriptionally. This is not the case in rapidly dividing yeast, as the majority of nascent pre-rRNAs are processed cotranscriptionally, with cleavage at the A2 site first releasing a pre-40S ribosomal subunit followed by release of a pre-60S ribosomal subunit upon transcription termination. Ribosome assembly is driven in part by hierarchical association of assembly factors and r-proteins. Groups of proteins are thought to associate with pre-ribosomes cotranscriptionally during early assembly steps, whereas others associate later, after transcription is completed. Here we describe a previously uncharacterized phenotype observed upon disruption of ribosome assembly, in which normally late-binding proteins associate earlier, with pre-ribosomes containing 35S pre-rRNA. As previously observed by many other groups, we show that disruption of 60S subunit biogenesis results in increased amounts of 35S pre-rRNA, suggesting that a greater fraction of pre-rRNAs are processed post-transcriptionally. Surprisingly, we found that early pre-ribosomes containing 35S pre-rRNA also contain proteins previously thought to only associate with pre-ribosomes after early pre-rRNA processing steps have separated maturation of the two subunits. We believe the shift to post-transcriptional processing is ultimately due to decreased cellular division upon disruption of ribosome assembly. When cells are grown under stress or to high density, a greater fraction of pre-rRNAs are processed post-transcriptionally and follow an alternative processing pathway. Together, these results affirm the principle that ribosome assembly occurs through different, parallel assembly pathways and suggest that there is a kinetic foot-race between the formation of protein binding sites and pre-rRNA processing events.


Assuntos
Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Fúngico/metabolismo , Ribossomos/metabolismo , Leveduras/metabolismo , Leveduras/genética
6.
Mol Cell Biol ; 34(10): 1863-77, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24636992

RESUMO

Previous work from our lab suggests that a group of interdependent assembly factors (A(3) factors) is necessary to create early, stable preribosomes. Many of these proteins bind at or near internal transcribed spacer 2 (ITS2), but in their absence, ITS1 is not removed from rRNA, suggesting long-range communication between these two spacers. By comparing the nonessential assembly factors Nop12 and Pwp1, we show that misfolding of rRNA is sufficient to perturb early steps of biogenesis, but it is the lack of A(3) factors that results in turnover of early preribosomes. Deletion of NOP12 significantly inhibits 27SA(3) pre-rRNA processing, even though the A(3) factors are present in preribosomes. Furthermore, pre-rRNAs are stable, indicating that the block in processing is not sufficient to trigger turnover. This is in contrast to the absence of Pwp1, in which the A(3) factors are not present and pre-rRNAs are unstable. In vivo RNA structure probing revealed that the pre-rRNA processing defects are due to misfolding of 5.8S rRNA. In the absence of Nop12 and Pwp1, rRNA helix 5 is not stably formed. Interestingly, the absence of Nop12 results in the formation of an alternative yet unproductive helix 5 when cells are grown at low temperatures.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , RNA Ribossômico 5,8S/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Proteínas Cromossômicas não Histona/genética , Citoplasma/metabolismo , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Dobramento de RNA , Processamento Pós-Transcricional do RNA , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de RNA
7.
Genes Dev ; 28(2): 198-210, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24449272

RESUMO

Despite having high-resolution structures for eukaryotic large ribosomal subunits, it remained unclear how these ribonucleoprotein complexes are constructed in living cells. Nevertheless, knowing where ribosomal proteins interact with ribosomal RNA (rRNA) provides a strategic platform to investigate the connection between spatial and temporal aspects of 60S subunit biogenesis. We previously found that the function of individual yeast large subunit ribosomal proteins (RPLs) in precursor rRNA (pre-rRNA) processing correlates with their location in the structure of mature 60S subunits. This observation suggested that there is an order by which 60S subunits are formed. To test this model, we used proteomic approaches to assay changes in the levels of ribosomal proteins and assembly factors in preribosomes when RPLs functioning in early, middle, and late steps of pre-60S assembly are depleted. Our results demonstrate that structural domains of eukaryotic 60S ribosomal subunits are formed in a hierarchical fashion. Assembly begins at the convex solvent side, followed by the polypeptide exit tunnel, the intersubunit side, and finally the central protuberance. This model provides an initial paradigm for the sequential assembly of eukaryotic 60S subunits. Our results reveal striking differences and similarities between assembly of bacterial and eukaryotic large ribosomal subunits, providing insights into how these RNA-protein particles evolved.


Assuntos
Modelos Moleculares , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína/fisiologia , Subunidades Ribossômicas Maiores de Eucariotos/química , Saccharomyces cerevisiae/química
8.
Nucleic Acids Res ; 41(3): 1965-83, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23268442

RESUMO

Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.


Assuntos
Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Dados de Sequência Molecular , Mutação , Precursores de RNA/química , RNA Ribossômico/química , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
9.
RNA ; 18(10): 1805-22, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22893726

RESUMO

Ribosome biogenesis is a complex multistep process that involves alternating steps of folding and processing of pre-rRNAs in concert with assembly of ribosomal proteins. Recently, there has been increased interest in the roles of ribosomal proteins in eukaryotic ribosome biogenesis in vivo, focusing primarily on their function in pre-rRNA processing. However, much less is known about participation of ribosomal proteins in the formation and rearrangement of preribosomal particles as they mature to functional subunits. We have studied ribosomal proteins L7 and L8, which are required for the same early steps in pre-rRNA processing during assembly of 60S subunits but are located in different domains within ribosomes. Depletion of either leads to defects in processing of 27SA(3) to 27SB pre-rRNA and turnover of pre-rRNAs destined for large ribosomal subunits. A specific subset of proteins is diminished from these residual assembly intermediates: six assembly factors required for processing of 27SA(3) pre-rRNA and four ribosomal proteins bound to domain I of 25S and 5.8S rRNAs surrounding the polypeptide exit tunnel. In addition, specific sets of ribosomal proteins are affected in each mutant: In the absence of L7, proteins bound to domain II, L6, L14, L20, and L33 are greatly diminished, while proteins L13, L15, and L36 that bind to domain I are affected in the absence of L8. Thus, L7 and L8 might establish RNP structures within assembling ribosomes necessary for the stable association and function of the A(3) assembly factors and for proper assembly of the neighborhoods containing domains I and II.


Assuntos
RNA Ribossômico/metabolismo , Proteínas Ribossômicas/fisiologia , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Análise em Microsséries , Organismos Geneticamente Modificados , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , RNA Ribossômico/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Leveduras/genética , Leveduras/metabolismo
10.
Nucleic Acids Res ; 40(17): 8646-61, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22735702

RESUMO

To better define the roles of assembly factors required for eukaryotic ribosome biogenesis, we have focused on one specific step in maturation of yeast 60 S ribosomal subunits: processing of 27SB pre-ribosomal RNA. At least 14 assembly factors, the 'B-factor' proteins, are required for this step. These include most of the major functional classes of assembly factors: RNA-binding proteins, scaffolding protein, DEAD-box ATPases and GTPases. We have investigated the mechanisms by which these factors associate with assembling ribosomes. Our data establish a recruitment model in which assembly of the B-factors into nascent ribosomes ultimately leads to the recruitment of the GTPase Nog2. A more detailed analysis suggests that this occurs in a hierarchical manner via two largely independent recruiting pathways that converge on Nog2. Understanding recruitment has allowed us to better determine the order of association of all assembly factors functioning in one step of ribosome assembly. Furthermore, we have identified a novel subcomplex composed of the B-factors Nop2 and Nip7. Finally, we identified a means by which this step in ribosome biogenesis is regulated in concert with cell growth via the TOR protein kinase pathway. Inhibition of TOR kinase decreases association of Rpf2, Spb4, Nog1 and Nog2 with pre-ribosomes.


Assuntos
Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/metabolismo , GTP Fosfo-Hidrolases , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Serina-Treonina Quinases TOR/metabolismo
11.
Nucleic Acids Res ; 40(10): 4574-88, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22319211

RESUMO

The yeast protein Ebp2 is required for early steps in production of 60S ribosomal subunits. To search for cofactors with which Ebp2 functions, or substrates on which it acts, we screened for mutants that were synthetically lethal (sl) with the ebp2-14 mutation. Four different mutant alleles of the 60S ribosomal subunit assembly factor Brx1 were found. To investigate defects of the double mutant, we constructed strains conditional for the ebp2-14 brx1- synthetic lethal phenotype. These ebp2-14 brx1 mutants were defective in processing of 27S pre-rRNA and production of 60S subunits, under conditions where each single mutant was not. Ebp2 and Brx1 exhibit a strong two-hybrid interaction, which is eliminated by some combinations of brx1 and ebp2 mutations. In one such mutant, Ebp2 and Brx1 can still associate with pre-ribosomes, but subunit maturation is perturbed. Depletion of either Ebp2 or Brx1 revealed that Brx1 requires Ebp2 for its stable association with pre-ribosomes, but Ebp2 does not depend on the presence of Brx1 to enter pre-ribosomes. These results suggest that assembly of 60S ribosomal subunits requires cooperation of Ebp2 with Brx1, together with other molecules present in pre-ribosomes, potentially including several found in assembly subcomplexes with Brx1 and Ebp2.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/genética , Dados de Sequência Molecular , Mutação , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
12.
Mol Biol Cell ; 22(18): 3420-30, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21795388

RESUMO

The kinesin-related molecular motor Eg5 plays roles in cell division, promoting spindle assembly. We show that during interphase Eg5 is associated with ribosomes and is required for optimal nascent polypeptide synthesis. When Eg5 was inhibited, ribosomes no longer bound to microtubules in vitro, ribosome transit rates slowed, and polysomes accumulated in intact cells, suggesting defects in elongation or termination during polypeptide synthesis. These results demonstrate that the molecular motor Eg5 associates with ribosomes and enhances the efficiency of translation.


Assuntos
Cinesinas/metabolismo , Biossíntese de Proteínas , Animais , Linhagem Celular , Centrifugação com Gradiente de Concentração , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , Interfase , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Camundongos , Microtúbulos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Ligação Proteica , Pirimidinas/farmacologia , Interferência de RNA , Ribossomos/metabolismo , Tionas/farmacologia
13.
PLoS One ; 4(12): e8249, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20011513

RESUMO

The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins). They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU) proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i) how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii) the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.


Assuntos
RNA Ribossômico/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Northern Blotting , Citoplasma/metabolismo , Endonucleases/metabolismo , Modelos Moleculares , Mutação/genética , Processamento de Terminações 3' de RNA , Precursores de RNA/metabolismo , Transporte de RNA , RNA Ribossômico 5,8S/metabolismo
14.
Mol Biol Cell ; 19(7): 2844-56, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18448671

RESUMO

In Saccharomyces cerevisiae, more than 180 assembly factors associate with preribosomes to enable folding of pre-rRNA, recruitment of ribosomal proteins, and processing of pre-rRNAs to produce mature ribosomes. To examine the molecular architecture of preribosomes and to connect this structure to functions of each assembly factor, assembly subcomplexes have been purified from preribosomal particles. The Nop7-subcomplex contains three assembly factors: Nop7, Erb1, and Ytm1, each of which is necessary for conversion of 27SA(3) pre-rRNA to 27SB(S) pre-rRNA. However, interactions among these three proteins and mechanisms of their recruitment and function in pre-rRNPs are poorly understood. Here we show that Ytm1, Erb1, and Nop7 assemble into preribosomes in an interdependent manner. We identified which domains within Ytm1, Erb1, and Nop7 are necessary for their interaction with each other and are sufficient for recruitment of each protein into preribosomes. Dominant negative effects on growth and ribosome biogenesis caused by overexpressing truncated Ytm1, Erb1, or Nop7 constructs, and recessive phenotypes of the truncated proteins revealed not only interaction domains but also other domains potentially important for each protein to function in ribosome biogenesis. Our data suggest a model for the architecture of the Nop7-subcomplex and provide potential functions of domains of each protein.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Ribossômicas/fisiologia , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Motivos de Aminoácidos , Clonagem Molecular , Técnica Indireta de Fluorescência para Anticorpo , Genes Dominantes , Modelos Biológicos , Conformação Molecular , Mutação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Temperatura
15.
Mol Cell Biol ; 28(11): 3686-99, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18378690

RESUMO

Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.


Assuntos
Genes Fúngicos , RNA Fúngico/metabolismo , RNA Nucleolar Pequeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Alelos , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Temperatura Alta , Mutação , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , RNA Fúngico/análise , RNA Nucleolar Pequeno/análise , Ribonucleoproteínas Nucleolares Pequenas/análise , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética
16.
Genes Dev ; 21(20): 2580-92, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17938242

RESUMO

More than 170 proteins are necessary for assembly of ribosomes in eukaryotes. However, cofactors that function with each of these proteins, substrates on which they act, and the precise functions of assembly factors--e.g., recruiting other molecules into preribosomes or triggering structural rearrangements of pre-rRNPs--remain mostly unknown. Here we investigated the recruitment of two ribosomal proteins and 5S ribosomal RNA (rRNA) into nascent ribosomes. We identified a ribonucleoprotein neighborhood in preribosomes that contains two yeast ribosome assembly factors, Rpf2 and Rrs1, two ribosomal proteins, rpL5 and rpL11, and 5S rRNA. Interactions between each of these four proteins have been confirmed by binding assays in vitro. These molecules assemble into 90S preribosomal particles containing 35S rRNA precursor (pre-rRNA). Rpf2 and Rrs1 are required for recruiting rpL5, rpL11, and 5S rRNA into preribosomes. In the absence of association of these molecules with pre-rRNPs, processing of 27SB pre-rRNA is blocked. Consequently, the abortive 66S pre-rRNPs are prematurely released from the nucleolus to the nucleoplasm, and cannot be exported to the cytoplasm.


Assuntos
Proteínas Nucleares/metabolismo , RNA Fúngico/metabolismo , RNA Ribossômico 5S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , GTP Fosfo-Hidrolases , Genes Fúngicos , Substâncias Macromoleculares , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/genética , Processamento Pós-Transcricional do RNA , RNA Fúngico/química , RNA Fúngico/genética , RNA Ribossômico 5S/química , RNA Ribossômico 5S/genética , Proteínas de Ligação a RNA/genética , Proteína Ribossômica L10 , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Mol Cell Biol ; 25(23): 10419-32, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16287855

RESUMO

The essential, conserved yeast nucleolar protein Ytm1 is one of 17 proteins in ribosome assembly intermediates that contain WD40 protein-protein interaction motifs. Such proteins may play key roles in organizing other molecules necessary for ribosome biogenesis. Ytm1 is present in four consecutive 66S preribosomes containing 27SA2, 27SA3, 27SB, and 25.5S plus 7S pre-rRNAs plus ribosome assembly factors and ribosomal proteins. Ytm1 binds directly to Erb1 and is present in a heterotrimeric subcomplex together with Erb1 and Nop7, both within preribosomes and independently of preribosomes. However, Nop7 and Erb1 assemble into preribosomes prior to Ytm1. Mutations in the WD40 motifs of Ytm1 disrupt binding to Erb1, destabilize the heterotrimer, and delay pre-rRNA processing and nuclear export of preribosomes. Nevertheless, 66S preribosomes lacking Ytm1 remain otherwise intact.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Deleção de Genes , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Mutação/genética , Proteínas Nucleares/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
18.
Nutr Cancer ; 51(2): 162-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15860438

RESUMO

Although many dietary studies have focused on breast cancer risk, few have examined dietary influence on tumor characteristics such as estrogen receptor (ER) status. Because phytoestrogens may modulate hormone levels and ER expression, we analyzed ER status and phytoestrogen intake in a case-case study of 124 premenopausal breast cancer patients. We assessed intake with a food-frequency questionnaire and obtained ER status from medical records. Rather than focusing on risk, we evaluated whether low intakes were more strongly associated with ER-negative tumors than with ER-positive disease. In logistic regression adjusting for potential confounders, threefold greater risks of ER-negative tumors relative to ER-positive tumors were associated with low intake of the isoflavones genistein (odds ratio, OR=3.50; 95% confidence interval, CI=1.43-8.58) and daidzein (OR=3.10; 95% CI=1.31-7.30). Low intake of the flavonoid kaempferol (OR=0.36; 95% CI=0.16-0.83), the trace element boron (OR=0.33; 95% CI=0.13-0.83), and the phytosterol beta-sitosterol (OR=0.42; 95% CI=0.18-0.98) were associated with decreased risk of ER-negative tumors relative to ER-positive disease. Other phytoestrogens were not significantly associated with ER status. Thus, in premenopausal patients, some phytoestrogens may affect breast carcinogenesis by influencing ER status. Such findings suggest new directions for mechanistic research on dietary factors in breast carcinogenesis that may have relevance for prevention and clinical treatment.


Assuntos
Neoplasias da Mama/metabolismo , Dieta , Estado Nutricional/fisiologia , Fitoestrógenos/farmacologia , Pré-Menopausa/fisiologia , Receptores de Estrogênio/efeitos dos fármacos , Adulto , Anticarcinógenos/administração & dosagem , Anticarcinógenos/farmacologia , Boro/administração & dosagem , Boro/farmacologia , Neoplasias da Mama/dietoterapia , Feminino , Genisteína/farmacologia , Humanos , Hipolipemiantes/administração & dosagem , Hipolipemiantes/farmacologia , Isoflavonas/administração & dosagem , Isoflavonas/farmacologia , Quempferóis/administração & dosagem , Quempferóis/farmacologia , Pessoa de Meia-Idade , Razão de Chances , Fitoestrógenos/administração & dosagem , Receptores de Estrogênio/metabolismo , Fatores de Risco , Sitosteroides/administração & dosagem , Sitosteroides/farmacologia , Inquéritos e Questionários
19.
Mol Cell ; 14(3): 331-42, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-15125836

RESUMO

Eukaryotic ribosomal proteins are required for production of stable ribosome assembly intermediates and mature ribosomes, but more specific roles for these proteins in biogenesis of ribosomes are not known. Here we demonstrate a particular function for yeast ribosomal protein rpS14 in late steps of 40S ribosomal subunit maturation and pre-rRNA processing. Extraordinary amounts of 43S preribosomes containing 20S pre-rRNA accumulate in the cytoplasm of certain rps14 mutants. These mutations not only reveal a more precise function for rpS14 in ribosome biogenesis but also uncover a role in ribosome assembly for the extended tails found in many ribosomal proteins. These studies are one of the first to relate the structure of eukaryotic ribosomes to their assembly pathway-the carboxy-terminal extension of rpS14 is located in the 40S subunit near the 3' end of 18S rRNA, consistent with a role for rpS14 in 3' end processing of 20S pre-rRNA.


Assuntos
RNA Ribossômico/biossíntese , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Modelos Moleculares , Mutação/genética , Estrutura Terciária de Proteína/genética , Processamento de Terminações 3' de RNA/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
20.
RNA ; 10(5): 813-27, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15100437

RESUMO

The Saccharomyces cerevisiae gene RRP1 encodes an essential, evolutionarily conserved protein necessary for biogenesis of 60S ribosomal subunits. Processing of 27S pre-ribosomal RNA to mature 25S rRNA is blocked and 60S subunits are deficient in the temperature-sensitive rrp1-1 mutant. We have used recent advances in proteomic analysis to examine in more detail the function of Rrp1p in ribosome biogenesis. We show that Rrp1p is a nucleolar protein associated with several distinct 66S pre-ribosomal particles. These pre-ribosomes contain ribosomal proteins plus at least 28 nonribosomal proteins necessary for production of 60S ribosomal subunits. Inactivation of Rrp1p inhibits processing of 27SA(3) to 27SB(S) pre-rRNA and of 27SB pre-rRNA to 7S plus 25.5S pre-rRNA. Thus, in the rrp1-1 mutant, 66S pre-ribosomal particles accumulate that contain 27SA(3) and 27SB(L) pre-ribosomal RNAs.


Assuntos
Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/biossíntese , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Nucléolo Celular/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Ribossômicas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...