Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Vision (Basel) ; 7(3)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37489328

RESUMO

The COVID-19 pandemic had significant impacts on the mental and visual health of patients. This cross-sectional, survey-based, multicentric study evaluates the state of mental and visual health among patients with chronic ocular diseases such as glaucoma, neovascular age-related macular degeneration, diabetic retinopathy, or chronic uveitis during the lockdown period of the COVID-19 pandemic. Mental health was assessed using three questionnaires: the Patient Health Questionnaire-9 (PHQ-9), the Impact of Event Scale-Revised (IES-R), and the National Eye Institute Visual Function Questionnaire-25 (VFQ-25). A total of 145 patients completed the questionnaires. The PHQ-9 showed that most respondents (n = 89, 61%) had none or minimal depressive symptoms, while 31 (21%) had mild depressive symptoms, 19 (13%) had moderate depressive symptoms, 5 (3%) had moderately severe depressive symptoms, and 1 (1%) had severe depressive symptoms. Regarding stress surrounding the pandemic, the median IES-R showed mild distress in 16 (11%), moderate distress in 7 (5%), and severe distress in 4 (3%). The COVID-19 pandemic lockdowns had a negative impact on patients' mental health with close to 20% of the patients reporting at least moderately depressive symptoms and 19% reporting at least mildly distressful symptoms.

4.
Tissue Eng Part C Methods ; 27(3): 152-166, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33573474

RESUMO

The lack of appropriate experimental models often limits our ability to investigate the establishment of infections in specific tissues. To reproduce the structural and spatial organization of vaginal mucosae to study human immunodeficiency virus type-1 (HIV-1) infection, we used the self-assembly technique to bioengineer tridimensional vaginal mucosae using human cells extracted from HIV-1-negative healthy pre- and postmenopausal donors. We produced a stroma, free of exogenous material, that can be adapted to generate near-to-native vaginal tissue with the best complexity obtained with seeded epithelial cells on the organ-specific stroma. The autologous engineered tissues had mechanical properties close to native mucosa and shared similar glycogen production, which declined in reconstructed tissues of the postmenopausal donor. The in vitro-engineered tissues were also rendered immune competent by adding human monocyte-derived macrophages (MDMs) on the epithelium or in the stroma layers. The model was infected with HIV-1, and viral replication and transcytosis were observed when immunocompetent reconstructed vaginal mucosa tissue has incorporated MDMs into the stroma and infected with free HIV-1 green fluorescent protein (GFP) viral particles. These data illustrate a natural permissiveness of immunocompetent untransformed human vaginal mucosae to HIV-1 infection. This model offers a physiological tool to explore viral load, HIV-1 transmission in an environment that may contribute to the virus propagation, and new antiviral treatments in vitro. Impact statement This study introduces an innovative immunocompetent three-dimensional human organ-specific vaginal mucosa free of exogenous material for in vitro modeling of human immunodeficiency virus type-1 (HIV-1) infection. The proposed model is histologically close to native tissue, especially by presenting glycogen accumulation in the epithelium's superficial cells, responsive to estrogen, and able to sustain a monocyte-derived macrophage population infected or not by HIV-1 during ∼2 months.


Assuntos
Infecções por HIV , HIV-1 , Feminino , Hormônios , Humanos , Mucosa , Vagina
5.
Tissue Eng Part A ; 26(13-14): 811-822, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32354258

RESUMO

Tissue engineering offers novel therapies for vaginal reconstruction in patients with congenital vaginal agenesis such as Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. This study aims to reconstruct a prevascularized tissue-engineered model of human vaginal mucosa (HVM) using the self-assembly approach, free of exogenous materials. In this study, a new cell culture method was used to enhance microcapillary network formation while maintaining sufficient biomechanical properties for surgical manipulation. Human vaginal fibroblasts were coseeded with human umbilical vein endothelial cells (HUVECs). Transduction of HUVEC with a vector that allows the expression of both green fluorescent protein (GFP) and luciferase allowed the monitoring of the formation of a microvascular network in vitro and the assessment of the viability and stability of HUVEC in vivo. Two reconstructed vaginal mucosa grafts, a prevascularized, and a nonvascularized control were implanted subcutaneously on the back of 12 female nude mice and monitored for up to 21 days. Prevascularized grafts demonstrated signs of earlier vascularization compared with controls. However, there were no differences in graft survival outcomes in both groups. The finding of mouse red blood cells within GFP-positive capillaries 1 week after implantation demonstrates the capacity of the reconstructed capillary-like network to connect to the host circulation and sustain blood perfusion in vivo. Furthermore, sites of inosculation between GFP-positive HUVEC and mouse endothelial cells were observed within prevascularized grafts. Our results demonstrate that the addition of endothelial cells using a hybrid approach of self-assembly and reseeding generates a mature capillary-like network that has the potential to become functional in vivo, offering an optimized prevascularized HVM model for further translational research. Impact statement This study introduces a prevascularized tissue-engineered model of human vaginal mucosa (HVM), which is adapted for surgical applications. The prevascularization of tissue-engineered grafts aims to enhance graft survival and is an interesting feature for sexual function. Various scaffold-free cell culture methods were tested to reconstruct a mature microcapillary network within HVM grafts while meeting biomechanical needs for surgery. Moreover, this animal study assesses the vascular functionality of prevascularized grafts in vivo, serving as a proof of concept for further translational applications. This research underlines the continuous efforts to optimize current models to closely mimic native tissues and further improve surgical outcomes.


Assuntos
Mucosa/irrigação sanguínea , Mucosa/citologia , Engenharia Tecidual/métodos , Vagina/irrigação sanguínea , Vagina/citologia , Animais , Técnicas de Cultura de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Alicerces Teciduais/química
6.
Biomed Res Int ; 2018: 5684679, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707571

RESUMO

Twenty years ago, Dr. François A. Auger, the founder of the Laboratory of Experimental Organogenesis (LOEX), introduced the self-assembly technique. This innovative technique relies on the ability of dermal fibroblasts to produce and assemble their own extracellular matrix, differing from all other tissue-engineering techniques that use preformed synthetic scaffolds. Nevertheless, the use of the self-assembly technique was limited for a long time due to its main drawbacks: time and cost. Recent scientific breakthroughs have addressed these limitations. New protocol modifications that aim at increasing the rate of extracellular matrix formation have been proposed to reduce the production costs and laboratory handling time of engineered tissues. Moreover, the introduction of vascularization strategies in vitro permits the formation of capillary-like networks within reconstructed tissues. These optimization strategies enable the large-scale production of inexpensive native-like substitutes using the self-assembly technique. These substitutes can be used to reconstruct three-dimensional models free of exogenous materials for clinical and fundamental applications.


Assuntos
Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , História do Século XX , História do Século XXI , Humanos , Engenharia Tecidual/história
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...